Rkrem.ru

Большая стройка
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

МЕГАФЛЕКС В

МЕГАФЛЕКС В

«Мегафлекс» В — это строительная пароизоляционная пленка, разработанная для комплексной защиты теплоизоляции от внутреннего конденсата.
«Мегафлекс» В позволяет обеспечить комфортные условия, продлевает и сохраняет функциональные свойства утеплителя и конструкции дома.

КАРКАСНАЯ СТЕНА:

  1. Внутренняя отделка стены.
  2. Контррейка. Контррейка располагается поверх пароизоляции «Megaflex» B, обеспечивая вентиляционный зазор. Крепится гвоздями или саморезами.
  3. «Megaflex» B. Материал монтируется гладкой стороной к внутренней стороне утеплителя. Необходимо обеспечивать плотное прилегание изоляции к утеплителю. Рулон раскатывается горизонтальными полотнищами, начиная снизу, внахлест. Ширина нахлеста — не менее 15 см. При отделке помещения вагонкой (фанерой, декоративными панелями и пр.). «Megaflex» B закрепляется к каркасу деревянными рейками, при отделке гипсокартоном — оцинкованными профилями. Внутренняя отделка должна монтироваться с учетом вентиляционного зазора.
  4. Утеплитель.
  5. Каркас.
  6. «Мегафлекс» А. Паропроницаемая мембрана для защиты утеплителя от внешней влаги.
  7. Наружная обшивка.

Кроме защиты от конденсата, в данном случае «Megaflex» B не позволяет микрочастицам утеплителя попадать вовнутрь помещения.

УТЕПЛЕННАЯ КРОВЛЯ:

  1. Внутренняя отделка стены.
  2. Контррейка. Растянутый материал закрепляется на стропилах деревянными контррейками, которые крепятся к стропилам гвоздями или саморезами. Контррейка обеспечивает вентиляционный зазор между «Megaflex» B и внутренней отделкой.
  3. Пароизоляция «Megaflex» B. Изоляция монтируется гладкой стороной к утеплителю на стропила или по черновой обшивке при помощи строительного степлера или оцинкованных гвоздей. Монтаж ведется снизу вверх, горизонтальными полотнищами, со стыками не менее 15 см.
  4. Утеплитель.
  5. Стропило.
  6. «Мегафлекс» А. Паропроницаемая мембрана для защиты утеплителя от внешней влаги.
  7. Обрешетка. По контррейкам крепится обрешетка или сплошной дощатый настил.
  8. Кровельный материал.

Кроме защиты от конденсата, в данном случае «Megaflex» B не позволяет микрочастицам утеплителя попадать вовнутрь помещения.

ДЕРЕВЯННЫЕ ПЕРЕКРЫТИЯ:

  1. Черновой пол (доска).
  2. Контррейка.
  3. «Megaflex» B. При устройстве пола отапливаемого помещения материал укладывается под черновой пол, на утеплитель гладкой стороной. Нахлесты по стыкам — не менее 15-20 см.
  4. Утеплитель.
  5. Балки перекрытия.
  6. Черновой потолок.
  7. «Megaflex» B. При устройстве потолка, материал укладывается между гипсокартоном и черновым потолком, гладкой стороной к потолку. В местах стыковки материала, нахлест должен быть не менее 15-20 см. Для проветривания влаги нужно обеспечивать зазор между «Megaflex» B и гипсокартоном.
  8. Потолочный отделочный материал (в данном случае гипсокартон).

Кроме защиты от конденсата, в данном случае «Megaflex» B не позволяет микрочастицам утеплителя попадать вовнутрь помещения.

ПОЛ ПЕРВОГО ЭТАЖА:

  1. Бетонная плита-перекрытие.
  2. «Мегафлекс» С. Защищает утеплитель от влаги цокольного этажа.
  3. Деревянные лаги.
  4. Утеплитель.
  5. «Megaflex» B. Монтируется с нахлестом 15-20 см, гладкой стороной к утеплителю, сверху прижимается контррейками, на которые кладется черновой пол (доска).
  6. Контррейка. Обеспечивает вентиляционный зазор между черновым полом и утеплителем, и крепится к деревянным балкам саморезами или гвоздями.
  7. Черновой пол (доска).

+7 (343) 264-41-11

+7 (343) 264-41-63

Варианты утепления стен | Изоляция внешних стен утеплителями

Можно разделить все стены по методу их изоляции – снаружи, посередине и изнутри.

Классические примеры установки изоляции посередине – слоистая кладка и сэндвич панели. Выбор изоляции для наружного утепления связан с выбором варианта финишной отделки. Это связано с особенностями работы конструкции. Для устройства фасада с вентилируемым воздушным зазором важна прочность материала и его продуваемость.

Вентилируемый фасад

Достаточно популярное решение, т.к. работы по отделке фасада можно производить в любое время года. Дело в том, что при его устройстве отсутствуют мокрые процессы. Требования к вентилируемым фасадам таковы, что использование в них горючих материалов запрещено. Исключение составляют лишь различные защитные пленки. Остальные требования тоже достаточно жесткие. В частности, теплоизоляционный слой должен быть гидрофобизирован, не давать усадки при условии закрепления дюбелями.

Еще очень важно, что бы в толще утеплителя не возникало конвективных потоков параллельных плоскости фасада, которые бы снижали его теплоизоляционные показатели.Для этого материал должен обладать низкой продуваемостью, которая связана внутренней структурой.

Типичная конструкция вентилируемого фасада включает в себя:

Теплоизоляционный слой, закрепленный дюбелями

Воздушная прослойка, порядка 50мм

Направляющие, закрепленные на стене через специальные кронштейны

Защитно-декоративный слой, установленный в направляющие.

Часто встречается конструкция утепления стены с отделкой вагонкой, или сайдингом. Конструкция очень похожа на классический вент фасад, но с одним отличием. Внешняя отделка крепится не на кронштейнах, а на каркас. При этом можно установить теплоизоляционные плиты между элементами каркаса в распор без дополнительного крепления.

Слоистая кладка

Такую конструкцию еще называют трехслойной.

Есть внутренняя верста (стена), которая является несущей. Выполняется она, как правило, из обычного глиняного кирпича, силикатного кирпича или блоков эффективного бетона. Далее идет слой теплоизоляции из минваты. Последний слой – наружная верста выполняется из лицевого кирпича и несет защитно-декоративную функцию. Между наружной и внутренней верстами устанавливаются гибкие связи из арматуры, или щелочестойкого стеклопластика.

Каркасные стены

При возведении каркасных зданий устанавливается каркас из стоек с шагом 600 мм. Внутреннее пространство заполняется теплоизоляционными плитами. Для защиты теплоизоляционного материала от увлажнения парами внутреннего воздуха устанавливают пароизоляционную пленку с внутренней «теплой» стороны утеплителя. Для защиты стены от продувания с наружной стороны утеплителя желательно предусмотреть ветрозащитный слой.

В качестве наружной обшивки, как правило, используют доски с последующей декоративной отделкой плитками, вагонкой, штукатуркой и др., для внутренней обшивки – гипсокартонные листы.

При возведении стен высотой более 3-х метров необходимо устраивать перемычки.

внутренняя обшивка из гипсокартонных листов

наружная обшивка из досок, декоративная отделка.

Штукатурный фасад

Можно выделить фасады с, так называемым, тонким и толстым штукатурным слоем.

Фасады с тонкой штукатуркой (7-9 мм) завоевывают все большую популярность.
Данная система утепления представляет собой следующую конструкцию:

Теплоизоляционная плита, которая сначала приклеивается, а после дюбелируется

Слой базовой штукатурки, армированный щелочестойкой стеклосеткой

Слой декоративной штукатурки.

Такая конструкция предъявляет повышенные требования ко всем компонентам. Поэтому рекомендуется утеплитель максимально высокой плотности. В систему входят все необходимые компоненты — различные штукатурки, крепежные элементы, армирующие сетки и т.д.

Отделка фасада толстым штукатурным слоем (30-40 мм) подразумевает использование специальных дюбелей и стальной сетки. Эти элементы несут практически всю нагрузку от штукатурного слоя и передают ее на стену. Из-за конструктивных особенностей такой системы теплоизоляционный слой испытывает только сжимающие нагрузки. Т.е. к нему предъявляются гораздо менее жесткие требования.

Типичная конструкция включает следующие элементы:

Стальная сетка на шарнирных креплениях

Слой штукатурки по стальной сеткe.

Изоляция с внутренней стороны стены

Такой способ имеет целый ряд больших недостатков:

Нарушается правило говорящее о том, что паропроницаемость слоев в многослойной конструкции должна возрастать изнутри наружу. Поэтому необходим пароизоляционный слой с внутренней стороны теплоизоляции для исключения возможной работы ее во влажном состоянии. При отсутствии искусственной вентиляции это обязательно приведет к конденсации влаги на пароизоляционном слое.

Несущая стена при таком способе утепления не будет выведена из зоны воздействия на нее внешней среды, в частности знакопеременных температур. Т.е. теряется огромное преимущество утепленной стены – высокая долговечность.

Если утепление изнутри единственно возможное решение, то его производят следующим образом:

Необходимо установить несущий каркас с шагом стоек 600 мм. Это позволит без проблем установить плиты утеплителя в распор.

Далее поверх утеплителя и каркаса необходимо установит пароизоляционный слой. Это может быть как специальная мембрана, так и обычная, но толстая пленка (min 200 мкм). Главное создать герметичный слой.

Затем, необходимо набить дополнительный каркас, что бы создать воздушный зазор между пароизоляцией и внутренней отделкой. Это позволит избежать увлажнения материала отделки в случае образования конденсата. Для этого достаточно небольшого (1-2 см) воздушного зазора.

И последний шаг – непосредственно отделка помещения.

Когда нужен вентиляционный зазор (вентзазор) в каркасном доме

Итак, если вы задумываетесь о том, нужен ли вентзазор в фасаде вашего карасного дома, обратите внимание на следующий список:

  • При намокании Если материал изоляции теряет собственные свойства при намокании, то зазор необходим, иначе все работы, к примеру, по утеплению жилища окажутся совершенно напрасными
  • Пропуск пара Материал, из которого изготовлены стены вашего дома, пропускает пар во внешний слой. Здесь без организации свободного пространства между поверхностью стен и утеплителя просто необходим.
  • Предотвращение избытка влаги Одним из самых распространенных вопросов является следующий: нужен ли вентзазор между пароизоляцией? В случае, когда отделка представляет собой пароизолирующий или влагоконденсирующий материал, то ей необходимо постоянно проветриваться, чтобы избытки воды не сохранялись в ее структуре.

Что касается последнего пункта, то в список подобных моделей входят следующие типы обшивки: виниловый и металлосайдинг, профилированный лист. Если они будут плотно нашиты на ровную стену, то остаткам скапливающейся воды будет некуда выйти. Как следствие, материалы быстро теряют свои свойства, а также начинают портиться внешне.

Нужен ли вентзазор между сайдингом и ОСБ (OSB)

Отвечая на вопрос о том, нужен ли вентзазор между сайдингом и ОСБ (от английского – OSB), также необходимо упомянуть о его надобности. Как уже было сказано, сайдинг является продуктом, который изолирует пар, а плита ОСБ вовсе состоит из древесной стружки, которая с легкостью накапливает остатки влаги, и может быстро испортиться под ее воздействием.

Дополнительные причины использовать вентзазор

Разберем еще несколько обязательных моментов, когда зазор является необходимым аспектом:

  • Предотвращение образования гнили и трещин Материал стен под декоративным слоем склонен к деформации и порче под воздействием влаги. Чтобы гниль и трещины не образовывались, достаточно проветривать поверхность, и все будет в порядке.
  • Предотвращение образования конденсата Материал декоративного слоя может способствовать образованию конденсата. Эти излишки воды должна незамедлительно удаляться.
Читать еще:  Что значит подготовка под чистовую отделку?

К примеру, если стены вашего дома изготовлены из дерева, то повышенный уровень влаги будет негативно сказываться на состоянии материала. Древесина разбухает, начинает гнить, а также внутри нее могут с легкостью селиться микроорганизмы и бактерии. Конечно, небольшое количество влаги будет собираться внутри, но уже не на стене, а на специальном металлическом слое, с которого жидкость начинает испаряться и уноситься с ветром.

Правильная укладка пароизоляции: итоги

Чтобы разобраться, как правильно укладывать пароизоляцию, нужно знать, зачем она нужна и принцип циркуляции воздуха. Пленка нужна, чтобы защитить теплоизоляцию от влаги, которая находится в теплом воздухе. Циркуляция воздушных потоков происходит в направлении из теплого помещения на холодную улицу. Соответственно, пароизоляцию нужно укладывать со стороны помещения, желательно оставляя зазор между пленкой и отделкой. Как определить стороны пароизоляции? У нее две стороны: эта и та, причем обе одинаковые. Пленка не пропускает пар в обоих направлениях. Такие вопросы задают те, кто не понимает разницы между пароизоляцией и диффузионной мембраной (гидроизоляцией).

В сухой стене — пароизоляция и вентилируемый зазор

Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

В теплое время года эта накопленная влага должна иметь возможность испариться.

Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

  1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
  2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

Однослойные стены имеют одинаковое сопротивление паропроницанию по всей толщине, а также равномерное изменение температуры по толщине стены. Граница конденсации водяных паров в правильно спроектированной стене без утеплителя находится в толще стены, ближе к наружной поверхности. Это обеспечивает таким стенам положительный баланс удаления влаги из толщи стены во всех случаях, кроме помещений с повышенной влажностью.

В многослойных стенах с утеплителем используются материалы с разным сопротивлением паропроницанию. Кроме того, распределение температуры в толще многослойной стены не равномерное. На границе слоев в толще стены имеем резкие перепады температуры.

Чтобы обеспечить требуемый баланс перемещения влаги в многослойной стене необходимо, чтобы сопротивление паропроницанию материала в стене уменьшалось по направлению от внутренней поверхности к наружной.

В противном случае, если наружный слой будет иметь большее сопротивление паропроницанию, баланс влагоперемещения сместится в сторону накопления влаги в стене.

Сопротивление паропроницанию газобетона значительно меньше, чем у керамики. При фасадной отделке дома из газобетона керамическим кирпичом обязателен вентилируемый зазор между слоями. При отсутствии зазора блоки будут накапливать влагу.

Вентилируемый зазор между лицевой кладкой из керамического кирпича и несущей стеной из керамзитобетонных блоков не нужен, т.к. сопротивление паропроницанию кирпичной облицовки меньше, чем у стены из керамзитобетонных блоков.

При неправильном устройстве стены, влага в утеплителе будет накапливаться постепенно.

Уже на второй, максимум третий-пятый отопительный период, можно будет ощутить существенное увеличение расходов на отопление. Связано это, естественно, с тем, что увеличилась влажность теплоизоляционного слоя и всей конструкции в целом, а соответственно существенно снизился показатель термического сопротивления стены.

Влага из утеплителя будет передаваться и в соседние слои стены. На внутренней поверхности наружных стен может образовываться грибок и плесень.

Кроме накопления влаги, в утеплителе стены происходит еще один процесс — замерзание сконденсировавшейся влаги. Известно, что периодическое замерзание и оттаивание большого количества воды в толще материала разрушает его.

Увлажнение конденсатом утеплителя, например эковаты, также ведет к вымыванию антисептиков и антипиренов. Чаще всего, это борная кислота. Концентрация которой со временем будет снижаться.

Любой утеплитель постепенно, с годами, теряет свои теплосберегающие свойства. Когда надо менять утеплитель читайте здесь.

Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость. В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды. Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

Рис.3. Результат расчета влажностного режима
трехслойной стены: керамзитобетон — 250 мм., утеплитель
минераловатный — 100 мм., кирпич керамический — 120 мм.
жилой дом в г. С.-Петербург.
Накопления влаги в годичном цикле нет.

Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены или необходимость вентилируемого зазора на границе конденсации.

Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России.

Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

«Стена каменная трехслойная с облицовкой из кирпича» — это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

Содержание

Древесина – очень пористый материал, который хорошо пропускает воздух и впитывает влагу. Представьте, что сейчас «за бортом» примерно -15°. В доме тепло. Вы дышите, варите борщ на обед, стираете, вечером принимаете горячую ванну. Все это приводит к образованию водяных паров. Влага впитывается в стены и пытается выйти наружу. Где-то в толще стены – ближе к наружной или внутренней поверхности (это зависит от толщины стен и качества проведенного утепления) – находится «точка росы»: граница, на которой водяной пар превращается в воду.

Эта вода замерзает (на улице холодно!), в результате чего происходит сразу несколько очень нежелательных процессов:

  • Отсыревание стены и/или утеплителя.
  • Промерзание стен из-за превращения в лед попавшей внутрь влаги.
  • Постепенное разрушение конструкции стены.
  • Появление грибка и плесени.

Всего этого помогает избежать пароизоляция стен деревянного дома.

Паропроницаемость каркасного дома:

мифы и факты

При строительстве каркасного дома многие задаются вопросами: как правильно сделать пароизоляцию? Нужны ли вентзазоры, и как их организовать? В сети даже есть калькуляторы, которые якобы способны онлайн рассчитать правильный пирог стены.

Итак, правильный каркасный дом, как, впрочем, любой энергоэффективный дом, должен быть непродуваемым. В связи с этим многие называют каркасные дома «недышащими». Отчасти это верно, но скажите, разве в доме с бетонными стенами воздух проникает через поры в бетоне? По-моему, термин «дом-термос» как и выражение «стены дышат» — это в одинаковой степени спекуляция или маркетинг. Если стены будут пропускать воздух, то обеспечат вас лишь сквозняками. И выражение «стены дышат», подразумевает поглощение и отдачу некоторого количества влаги, но никак не перемещение воздуха извне внутрь помещения.

Всякий энергоэффективный дом – это термос, и свежий воздух в нем, это забота вентиляции или открытого окна, а никак не пор в стенах с неограниченным хаотичным притоком холодного воздуха. Это первый миф.

Как говорилось выше, идеальный дом, это дом-термос, и каркасный дом, ввиду особенностей технологии, наверное, в этом преуспел больше других. От этого он лидирует сразу в нескольких номинациях:
1. Самый недорогой дом
2. Самый тёплый дом
3. Самый быстрый дом в стройке с отделкой
5. Самый энергоэффективный

Этот перечень можно продолжать и дальше.

Основа тёплого и качественного каркасного дома — пароизоляция!

Очень часто на форумах и в письмах приходится отвечать на вопрос: почему в наших проектах технология подразумевает отделку дома снаружи плитами осб, ведь они не пропускают пар? И сразу же находятся те, кто советует делать вентзазор. Правда они забывают о том, что осб в каркасном доме это элемент пространственной жёсткости каркаса и его крепление через вентзазор не в полной мере добавляет жёсткости, как это должно быть по нормам и правилам. В то же время те же советчики сетуют на то, что нормы нарушать нельзя. Любые прокладки уменьшают жёсткость и делают соединение более шарнирным, что неправильно, так как в каркасе и так все соединения по нормам проектирования шарнирные. Позже я объясню, что такое вентзазор и как он выветривает тепло из утеплителя и дома.

Читать еще:  Отделка стен в ванной комнате стекловолокнистыми обоями

Осб плита в отличии от марли, наверное, не такая паропроницаемая. Это хорошо или плохо? Хорошо, так как она является отличной преградой для выветривания тепла, и плохого ничего нет, так как осб паропроницаема настолько, насколько пара может содержаться в конструкции при хорошо сделанной пароизоляции. Когда меня спрашивают: как пройдёт пар через осб? Я всегда задаю встречный вопрос: а сколько влаги превращенной в пар вы хотите выветрить через осб? Если это количество равно ложке в день на 2-3м/кв. стены, то пройдёт и более, а если это литры или ведра, то с этим уже не справится даже мембрана и стандартный вентзазор. У любого материала есть предел, поэтому основная задача — бороться не с последствиями, а с причиной попадания пара в конструкцию. Проще и эффективнее пар не пускать, чем потом решать, как его выветрить и не дать сконденсироваться.

Для обеспечения пароизоляции в продаже есть пароизоляционные плёнки и мембраны, и если вы сильно переживаете что пар может все же проникнуть в утеплитель, то необходимо тщательно и скрупулезно сделать паробарьер. Для этого необходимо учесть некоторые нюансы: во-первых, пароизоляцию надо начинать сверху и идти вниз, нижний слой пароизоляции должен обязательно перекрывать верхний как минимум на 30см, в идеале с проклейкой бутиловой лентой; во-вторых, делать пароизоляцию таким образом, чтобы она потом не была повреждена коммуникациями. Например, мы в наших проектах делаем двойную пароизоляцию с зазором, или с зазором заполненным ватой для дополнительного утепления.

По технологии каркасного строительства Кнауф, в случае полной отделки дома внутри ГКЛ, можно вообще не использовать плёнки пароизоляции, так как ГКЛ по нормам ещё менее паропроницаем чем любая пароизоляция, причём в разы. Сейчас в продаже появились панели типа Изоплат, которые якобы сильно паропроницаемы, но для временной отделки снаружи дома они покрыты парафином, что как понятно не делает панели в полной мере паропроницаемым материалом, а скорее только является рекламным и маркетинговым ходом. Это второй миф.

Далее, чтобы не быть голословным, хочу представить расчеты и картинки

Паропроницаемость нового листа осб от именитого производителя не менее 0,004 мг/м*ч*Па (со слов интернета). От нашего производителя скорее всего больше вдвое, что отчасти лучше. Однако во время эксплуатации, OSB лист подвергается действию влажности, высоких и низких температур. Клейковина дерева разрушается, ОСБ становится толще, от чего между щепой открываются капиллярные каналы и паропроницаемость может увеличиться в несколько раз — до 0,06-0,1 мг/м*ч*Па, что сравнимо с паропроницаемостью того же Изоплат или Tyvek® Housewrap — ветро- влагозащитная паропроницаемая мембрана. Сопротивление паропроницанию (ГОСТ 25898-83) 0,07 м2чПа/мг. То есть со временем ОСБ становится ещё более подходящим материалом: паропроницаем, жёсткий и защищает утеплитель от выветривания тепла из него.

Вентзазор, только вентзазор с открытым входом и выходом воздуха, можно назвать вентзазором. Он обязателен на скатной или плоской кровле, для выветривания влажности, которая выходит из дома через неплотности пароизоляции, через утеплитель и ветро-влагозащитную мембрану в подкровельное пространство. Вентзазор нужен на вентилируемом фасаде для тех же целей, а вот в доме между ГКЛ и ватой, или между ГКЛ и пароизоляцией уже получается не вентзазор, а воздушный мешок, как между двух или трёх стёкол в стеклопакете. По нашему мнению от него нет большого толка, так как влага оттуда скорее всего не выветрится по понятным причинам, а при огромном количестве от неправильной эксплуатации дома, может просто стекать ручейками под дом. Поэтому в наших проектах мы зачастую данный «вентзазор» заполняем ватой, тем самым отодвигая точку росы от внутренней отделки глубже в сторону улицы, чем теплее уличная стена (отделка и пароизоляция), тем меньше вероятность конденсации влаги на ней, да и данный метод уменьшает мостики холода (стойки каркаса).

Теперь давайте рассмотрим что мы имеем по калькуляторам онлайн в сети.

Картинка 1. Казалось бы ОСБ закрывает выход влаги из дома, но мы имеем чуть большую теплозащиту дома, так как любой уличный вентзазор охлаждает дом и из-за этого возрастают теплопотери, поэтому не стоит усердствовать с вентзазорами. При использовании вентзазора, картинка 3 и 4, мы имеем большие теплопотери, и ещё калькулятор на картинках 2, 3, 4 рассчитал почти идентичные данные с ветрозащитой и без неё, что странно и неправильно, но попробую объяснить почему. На самом деле всё очень просто – ветрозащита служит для предотвращения выдувания тепла из утеплителя. Попробуйте одеть свитер, выйти зимой на ветер и постоять. Через совсем непродолжительное время вам станет холодно, но стоит поверх свитера одеть тонкую ветровку, как и более сильный ветер не сможет вас охладить или заморозить. В данном случае мы ожидали в калькуляторе такие же данные, но увы, онлайн расчёт подвёл и в этот раз. При коэффициенте потерь в 1%, можно было бы вообще не тратиться на ветро-влагозащиту, которая препятствует выходу влаги из конструкций.

Если ещё внимательнее посмотреть на расчёт, то можно заметить, что по каким-то магическим причинам точка росы не ушла из конструкции, а просто опустилась на пять градусов вниз. Данному сдвигу тяжело дать объяснение, да ещё и «пирог» стены стал менее энергоэффективным.

Подобный калькулятор есть еще на одном сайте (см. таблицу ниже), там всё ещё интереснее: есть пункт в котором нас спрашивают, куда деваться воде в размере 23,29 гр/м2/ч, которая якобы будет в конструкции? Давайте попробуем разобраться, что это за цифра 23,29 грамм на м2 уличной стены в час. В среднем фасад дома 8х10 в 1,5этажа будет 160м2 (без окон и дверей) 160*23,29=3 726,4гр в час, умножим на сутки (24ч) = 89,43литра воды, если прибавить крышу, то калькулятор говорит, что в конструкциях будет за сутки более 130л воды. Вопрос — это что надо делать в доме, чтобы испарять в нём за сутки целую ванну или бочку воды, с учетом того, что в доме должна быть вентиляция и она должна забирать до 80% влаги? По крайней мере в городской квартире именно так, в отопительный период, когда влага может попадать в конструкции влажность воздуха в доме не более 20%.

Приведенные выше таблицы паропроницаемости несколько условны. Образование точки росы рассчитывается довольно точно, зная материалы и толщину слоев стены, влажность и температуру внутри и снаружи, но проблема в том, что данные условия могут не наступить в виду погодных и атмосферных явлений, поэтому к сожалению, при расчётах всегда берутся усреднённые данные.

Не стоит очень сильно бояться точки росы. Важно РЕАЛЬНОЕ возможное количество выпавшего в стене конденсата, а также важны свойства всего «пирога» стены. Пирог стены может иметь слабое водопоглощение и соответственно иметь меньше шансов разрушиться от замёрзшей расширяющейся влаги. Если по расчётам в очень сильные морозы в стене выпадет небольшое количество конденсата, то он потом выйдет, когда эти сильные морозы отступят.

Вот к примеру, в России после ВОВ построено огромное количество кирпичных домов с толщиной стены в полметра. По всем расчётам теплотехнических калькуляторов, холодной зимой в стенах этих зданий выпадает конденсат в огромном количестве. Но здания стоят уже больше полвека и стены не рушатся! Просто морозы имеют свойство отступать, и конденсат выходит, плюс водопоглощение и морозостойкость у кирпича очень хорошие, поэтому ничего страшного обычно не происходит.

Я не говорю, что это ерунда и что не нужно думать о паропроницаемости строительных материалов, точке росы и конденсате. Наоборот, думать нужно, точка росы в стене — это риск, но это данность, точка росы будет всегда в стене, главное, чтобы в этой точке не накапливалась влага, а свободно проходила её и выветривалась. Но тут возникает ещё одно условие, невозможно выветрить всю влагу, у всего есть предел, и тут возвращаемся в начало статьи: важно не бороться с причиной, а постараться избежать попадания влаги в конструкцию. А на сколько она опасна это уже зависит от климата внутри и снаружи и свойств стенового материала.

Влагонакопление стены рассчитывается по СП 50.13330.2012. Незначительное влагонакопление в стене зимой, не превышающее нормы по защите от переувлажнения, не наносит существенного вреда стенам. Хотя, конечно, желательно вообще избежать влаги внутри стены в зимнее время. Как упоминалось выше, стены с хорошей паропроницаемостью люди в быту часто называют «дышащими». Это очень спорное достоинство, основная влага из помещения должна удаляться через хорошо работающую вентиляцию. Влага, идущая через стены, фактически только вредит им, сокращая срок службы и увеличивая теплопотери.

Как пример, в самом начале статьи есть картинка необычного, симпатичного домика, заказчик хвастал, что потратил на него 4,5млн, но мы видим, что на чёрной ветро-влагозащите лежит иней, защита промёрзла, и больше не может выполнять вывод влаги из дома. Это всё ведёт к тому, что, конденсат начинает выпадать в утеплителе и в толще, утепленной им стены, из-за неправильно или некачественно сделанной пароизоляции.

Читать еще:  Как отделать парилку в бане своими руками?

Таким образом мы плавно перешли к вопросу: спасёт ли вентзазор, при плохо или неправильно сделанной пароизоляции в доме? Ответ – спасёт. Но, к сожалению, ненадолго, и вот почему: как показала практика конденсат выходит до тех пор, пока на пароизоляции или внешнем слое утеплителя не появиться лёд, который будет препятствовать её выходу.

Данный эффект хорошо виден на бороде и одежде людей на фото ниже. Судя по большим участкам открытых лиц и одежде, температура при которой конденсат осел в виде льда не сильно низкая, примерно минус 15-20С. Такая температура достаточно распространена зимой на большей части России, где строят дома по подобной технологии.

Это говорит о том, что ни один вентзазор, ни одна паропроницаемая мембрана не сможет выветрить большое количество влаги в виду её обледенения. Данные фото доказывают, что даже если вы оставите дом с открытой ватой без отделки (якобы ОСБ тормозит выход влаги), то при большом влагопереносе, верхний слой ваты покроется инеем и дальнейшее влагонакопление и промерзание ваты приведёт к тому что вся вата превратиться в кусок льда. Поэтому основное, как уже упоминалось выше, это хорошая пароизоляция (правильно смонтированная и без повреждений), которая сможет обеспечить сухость в конструкциях стен вкупе с вентиляцией.

Зазор между пароизоляцией и внутренней отделкой

+7 (495) 789 49 85

  • О компании
  • Продукция
    • Теплоизоляция
      • Стены и фасады
        • Утепление вентилируемого фасада
        • Утепление штукатурных фасадов
        • Утепление каркасных стен
        • Теплоизоляция в трехслойной (колодцевой) кладке
      • Кровли
        • Утепление скатных кровель
        • Теплоизоляция плоских кровель
      • Полы и перекрытия
        • Утепление каркасного пола
        • Теплоизоляция полов под стяжку
      • Камины и дымоходы
      • Сэндвич панели
        • ТЕПЛОИЗОЛЯЦИЯ ЖБ ПАНЕЛЕЙ
        • ТЕПЛОИЗОЛЯЦИЯ МЕТАЛЛИЧЕСКИХ СЭНДВИЧ-ПАНЕЛЕЙ
      • Фундаменты
      • Трубопроводы
      • Воздуховоды
      • Промышленное оборудование
      • Судостроение
    • Гидроизоляция и дренаж
      • Кровли
        • Гидроизоляция скатных кровель и мансард
        • Гидроизоляция плоских (промышленных) кровель
      • Фундаменты
        • Отсечная гидроизоляция
        • Гидроизоляция фундаментов
    • Пароизоляция и ветрозащита
      • Кровли
        • Пароизоляция в скатных кровлях
        • Пароизоляция плоских кровель
        • Ветрозащита скатных кровель
      • Стены и фасады
        • Пароизоляция
        • Ветрозащитные мембраны для фасадов
    • Звукоизоляция
      • Полы
        • Звукоизоляция в полах под стяжку
        • Изоляция каркасного пола
      • Акустические потолки и стеновые панели
      • Воздуховоды и промышленное оборудование
      • Звукоизоляция стен и перегородок
    • Огнезащита
      • Огнезащита воздуховодов
      • Огнезащита несущих стальных конструкций
      • Огнезащита кабельных каналов
      • Огнезащитные независимые потолки
    • Комплектующие и крепеж
      • Крепеж
        • Крепеж для фасадной изоляции
        • Крепеж для кровельной изоляции
        • Крепеж огнезащитных материалов
      • Изоляционные самоклеящие ленты
      • Защитные покрытия для трубопроводов
      • Клеевые составы и герметики
    • Монтажные и армирующие системы
      • Арматурные системы
      • Соединительные муфты для арматуры
      • Кронштейны для систем навесных фасадов
      • Кронштейны для кладок из облицовочного кирпича
      • Системы разгрузочных пространственных связей Detan
      • Композитная арматура
    • Фасадные системы
      • Штукатурные фасады
      • Вентилируемые фасады
    • Прошивные маты PAROC
  • ПРОИЗВОДИТЕЛИ И ЦЕНЫ
  • ОБЪЕКТЫ
  • СТАТЬИ И РЕКОМЕНДАЦИИ
  • ПРОЕКТИРОВЩИКУ
  • ВАКАНСИИ
  • КОНТАКТЫ
ПРОДУКЦИЯ
КОНСТРУКЦИИ ПРИМЕНЕНИЯ
Гарантия лучшей цены
Отправить заявку на расчет
Заказать звонок
Приглашаем к сотрудничеству
Опыт работы с 1995 года.
Специальные объектные цены.
Поставки во все регионы России.
Профессиональные консультации, помощь в проектировании, монтаж.
  • ГЛАВНАЯ
  • /
  • CТАТЬИ
  • /
  • ПРАВИЛЬНОЕ ОБУСТРОЙСТВО И УТЕПЛЕНИЕ МАНСАРДЫ

ПРАВИЛЬНОЕ ОБУСТРОЙСТВО И УТЕПЛЕНИЕ МАНСАРДЫ

Кровельное покрытие мансарды должно не только защищать дом от атмосферных осадков (дождь, снег), но и препятствовать охлаждению помещений верхнего этажа.

Как известно, теплый воздух, будучи легче холодного, всегда поднимается вверх, поэтому температура воздуха под потолком в среднем на 2°С выше, чем посередине высоты помещения. При одинаковой теплоизоляционной способности стен и кровли, потери тепла через последнюю всегда будут больше, что обусловлено большим перепадом температур между наружной и внутренней поверхностями покрытия мансарды. Кроме того, влагосодержание теплого воздуха обычно выше, чем холодного, поэтому конденсат на потолке верхнего этажа может образовываться при более высоких температурах, чем на внутренней поверхности стены. В связи с этим, к теплозащите кровельных покрытий предъявляются более жесткие требования, чем к наружным стенам.

Теплопотери через мансарду достаточно велики, поэтому правильно выполненное утепление ее покрытия способно принести ощутимый экономический эффект. При сравнении двух типовых двухэтажных домов площадью 205 м 2 с мансардами, утепленными в соответствии с прежними и новыми требованиями, установлено, что современный уровень теплозащиты позволяет снизить потери тепла через покрытие более чем на 3 кВт и тем самым существенно уменьшить мощность системы отопления и снизить расходы на обогрев дома.

Кроме того, значительную опасность для людей представляют сосульки, свисающие с крыши. В процессе сбивания сосулек велика вероятность повреждения кровли со всеми вытекающими последствиями.

Одной из основных причин образования сосулек в зимнее время является недостаточная теплоизоляция покрытия кровли. Снег, подогреваемый снизу теплом, проходящим через плохо утепленное покрытие, начинает подтаивать, и вода, стекающая с крыши из под снегового покрова, забивая и повреждая водосточную систему, превращается в сосульки. Отсутствие утепления чердаков и мансард, и, как следствие, образование огромных сосулек стало настоящим бичом для Санкт-Петербурга, где от обрушения ледяной массы с крыш ежегодно гибнет десятки человек. Только при хорошо выполненной теплоизоляции сосульки не будут доставлять неприятностей зимой.

Требования к теплозащите покрытий

Нормирование теплозащиты ограждающих конструкций, к числу которых принадлежат и кровли, производится в соответствии со СНиП II-3-79* ‘Строительная теплотехника’ (выпуск 1998 года) с учетом средней температуры воздуха и продолжительности отопительного периода в районе строительства. В соответствии с этими нормами требуемое приведенное сопротивление теплопередаче R o (см. статью Обеспечение теплоизоляционных характеристик вновь возводимых ограждающих конструкций коттеджей ) кровельных покрытий для Москвы и Подмосковья должно быть не менее 4,7 м 2 °С/Вт.

Конструктивные особенности

Не следует забывать, что влагосодержание теплого внутреннего воздуха выше, чем холодного наружного, поэтому диффузия водяных паров (как через покрытие мансарды, так и через наружные стены здания) направлена из помещения наружу. Наружная (верхняя) часть кровельного покрытия представляет собой гидроизоляционный слой, плохо пропускающий водяные пары и способствующий образованию конденсационной влаги с внутренней (нижней) стороны кровли. Последствия не заставят себя ждать: несмотря на хорошо выполненную гидроизоляцию крыши, на внутренней поверхности кровельного покрытия появятся мокрые пятна и плесень, ухудшатся теплоизоляционные качества утеплителя, с потолка начнут падать капельки воды (не из-за протечки кровли, а в результате конденсации водяных паров).

Учитывая отрицательное воздействие влаги на теплоизоляционные характеристики материалов, утеплитель необходимо защитить от увлажнения водяными парами, содержащимися в воздухе помещения, слоем пароизоляционного материала, расположив его с внутренней (нижней) стороны утеплителя. Для удаления влаги, попавшей по каким-то причинам в теплоизоляционный материал, между утеплителем и наружным (гидроизоляционным) слоем кровельного покрытия следует предусмотреть вентилируемую воздушную прослойку.

Очень часто нежилые чердачные помещения переоборудуют в жилые мансарды, сохраняя существующую стропильную систему. При этом, стремясь свести к минимуму дополнительную нагрузку на несущие конструкции здания, обычно используют легкий утеплитель пониженной плотности. Под воздействием движения воздушных масс, происходит «продувание» утеплителей малой плотности, сопровождающееся уносом тепла, поэтому для сохранения теплозащитных характеристик конструкции на поверхность теплоизоляции, граничащую с вентилируемой прослойкой, обязательно укладывается слой ветрозащитного паропроницаемого материала.

При утеплении мансарды нужно помнить, что потери тепла происходят не только через покрытие, но и через торцовую стену. Поэтому фронтон дома также необходимо хорошо утеплить в соответствии с современными требованиями.

Практические рекомендации по утеплению мансард приведены в табл. 1.

Таблица N1. Практические рекомендации по утеплению мансард

ПРИЧИНА СНИЖЕНИЯ ТЕПЛОИЗОЛЯЦИОННЫХ ХАРАКТЕРИСТИК ПОКРЫТИЯ

Увлажнение утеплителя атмосферными осадками

— Организация отвода воды при правильно выбранном уклоне ската;

-наклейка рулонных материалов внахлест (70-100 мм по ширине и 100 мм по длине) с разбежкой швов по вертикали;

— при кровле из волнистых или профилированных листов, нахлест смежных рядов на одну волну и напуск верхнего листа над нижним составляет 120-200 мм;

— при кровле из листовой стали стоячие фальцы располагают вдоль стока воды, лежачие фальцы — поперек.

Увлажнение утеплителя, вызванное диффузией водяных паров из внутренних помещений наружу

— устройство слоя из пароизоляционного материала с внутренней (теплой) стороны утеплителя ;

— перехлест полотнищ пароизоляции на 100 мм, склеивание (по возможности) полотнищ специальным герметизирующим скотчем;

— устройство вентилируемой воздушной прослойки между утеплителем и кровельным покрытием;

— толщина воздушной прослойки должна быть не менее:
а)25 мм для кровель из волнистых или профилированных материалов,
б)50 мм для кровель с покрытиями из плоских материалов.

Продувание волокнистых утеплителей

— установка ветрозащитного паропроводящего материала (6) с наружной (холодной) стороны утеплителя;

— установка ветрозащитной плиты или деревянной доски с торцовой стороны утеплителя

Образование мостов холода в результате усадки утеплителя

— Применять минераловатную теплоизоляцию с минимальным объемным весом 25 кг/м3

Утепление мансардных покрытий

Конструктивно покрытие мансарды состоит из системы стропил, установленных с шагом 600-1000 мм. Пространство между стропилами заполняется теплоизоляционным материалом (утеплителем). В качестве утепляющего материала рекомендуется использовать плиты из минеральной ваты на основе базальтового волокна . Теплоизоляционные плиты или маты могут укладываться в один или несколько слоев, причем общая толщина слоя утеплителя (табл. 2), а следовательно, и количество приобретаемого материала, зависит от коэффициента теплопроводности утеплителя, значение которого обязательно указывается в Сертификате Соответствия.

КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ УТЕПЛИТЕЛЯ λ , ВТ/М °С

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector