Rkrem.ru

Большая стройка
58 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Паровые турбины малой мощности от 100 до 20 000 кВт

Паровые турбины малой мощности от 100 до 20 000 кВт

ГК ТУРБОПАР производит паровые турбины малой мощности от 100 кВт до 1000 кВт, предназначенных для утилизации избыточной энергии пара от паровых котлов. Внедрение паровых турбин малой мощности является эффективным мероприятием по энергосбережению.

Паровые турбины
100 кВт – 1 МВт

Паровые турбины
1 МВт – 20 МВт

Турбопривод
1 – 20 МВт

Вертикальные приводные турбины 100-200 кВт

Паровая турбина 100 – 250 кВт

Паровая турбина 250 – 400 кВт

Противодавленческие турбины 800-1000кВт

Конденсационные паровые турбины

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование). Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока вырабатываемой энергии является одним из главных показателей качества отпускаемой электроэнергии. Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов. Резкое падение электрической частоты влечёт за собой отключение от сети и аварийный останов энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Все паровые турбины для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).

Схема работы конденсационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении, кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть полученной энергии используется для генерации электрического тока.

Паровые установки для выработки электро- и тепловой энергии

Исторически под паровой машиной понимали работающий на водяном паре тепловой двигатель поршневого типа, а когда были изобретены паровые турбины, подобные двигатели часто стали называть турбомашинами.

Дешевые виды местного твердого топлива из биомассы (дрова, древесные пеллеты, брикеты, щепа, опилки) используются для генерации электроэнергии или когенерации, для чего разработаны несколько технологий. Основные:

  • газификация — получение низкокалорийного горючего (генераторного) газа с его последующим использованием в газопоршневом двигателе, приводящем в действие электрогенератор;
  • сжигание твердого топлива в паровом котле и использование полученного пара для работы паровой турбины;
  • сжигание твердого топлива в паровом котле и использование пара для работы поршневого парового двигателя (классической паровой машины или парового поршневого двигателя).


Паровой двигатель Spilling


Газовый детандер Spilling

Главным достоинством современных паровых поршневых двигателей (машин) по сравнению с маломощными (особенно одноступенчатыми) паровыми турбинами является меньший удельный расход пара при равных параметрах давления и температуры пара на входе и выходе и при одинаковой мощности паровой машины и паровой турбины. К плюсам классических паровых машин также надо отнести, по сути, постоянный удельный расход пара при изменении нагрузки в широких пределах (в отличие от двигателей внутреннего сгорания — ДВС) при постоянной частоте вращения (работе на синхронный электрогенератор).

А теперь сравним паропоршневые установки (ППУ) с газопоршневыми (ГПУ). Для работы ГПУ в качестве топлива используется не только природный газ, но и с недавнего времени биогаз и генераторный газ, полученный в результате газификации биомассы. При работе классического поршневого двигателя на генераторном газе мощность двигателя падает до 60%. Но если сравнивать с классической паровой машиной, для работы которой используется водяной пар, то, согласно термодинамическому циклу Карно, его экономичность выше за счет того, что температура продуктов сгорания в ГПУ выше температуры пара, ограниченной теплостойкостью материалов парового котла. Однако при работе ГПУ горючий газ высокой температуры необходимо охлаждать перед подачей в цилиндр газопоршневого двигателя, а это приводит к сбросу во внешнюю среду около 20% теплоты сгорания твердого топлива и делает ГПУ неконкурентоспособным классической паровой машине. Принципиальным отличием паропоршневых двигателей от газопоршневых является наличие у первых накопителя энергии — парогенератора (парового котла), который играет роль пароводяного аккумулятора. Большое значение имеет и стабильность рабочего тела (пара). Отсюда следует, что кратковременные остановки котла не приведут к немедленной остановке самой паровой машины. Чего не скажешь о газопоршневом двигателе, в котором при загрузке газогенератора топливом возможно изменение состава газа, а это может привести к остановке двигателя. Существенное преимущество паровых двигателей заключается также в том, что для работы специализированных паровых котлов можно использовать биомассу (щепу или дрова) естественной влажности, а для газогенераторных установок влажность сырья, как правило, не должна превышать 20%. К тому же ГПУ требует более тщательного ухода, в отличие от паропоршневого двигателя. Преимуществами ППУ перед ГПУ и ДВС являются высокая выносливость и долговечность, простота обслуживания и ремонта и возможность работы, по сути, на любом виде дешевого местного твердого топлива. Последнее условие важно, потому что обеспечивает возможность широкого использования топливных ресурсов на местах и независимость от привозного топлива (к примеру, от топлива так называемого северного завоза в России).

Выше мы сравнивали паровые машины с газопоршневыми двигателями, которые работают на газифицированной биомассе. Понятно, что при работе ГПУ на природном газе при генерации только электроэнергии их преимущество неоспоримо. Однако при когенерации расклад не в пользу ГПУ; утилизировать тепловую энергию выхлопных газов значительно сложнее, чем тепловую энергию выхлопа паровой машины, т. к. коэффициент теплоотдачи конденсирующегося пара в теплообменнике в десятки раз выше коэффициента выхлопного газа ГПУ. Паровая машина экологичнее за счет меньшего объема выбросов NO и CO. Работающие паровые двигатели замкнутого цикла менее шумные, чем ГПУ и ДВС. Паровая машина вполне может конкурировать и с паровой турбиной мощностью 1000-2500 л. с. Конечно, по размерам и весу паровые машины больше в сравнении и превосходят паровые турбины, но за счет меньшей частоты вращения вала ППУ нет необходимости устанавливать редуктор. Ведутся и разработки компактных поршневых паровых двигателей. Например, компания из США Cyclone Power Technologies Inc. разработала паропоршневой двигатель со звездообразным расположением цилиндров мощностью 75 кВт, КПД 31,5% — по аналогии с бензиновыми авиационными моторами, которые используются до сих пор на труженике советской и российской авиации — знаменитом биплане Ан-2.

Читать еще:  Аксиальный генератор на постоянных магнитах своими руками

Использование паровых машин

За рубежом в малой энергетике (мини-ТЭС) вместо малых паровых турбин успешно используются паровые машины, или, как сегодня принято говорить, паропоршневые (паровые) моторы или двигатели. Основной отличительный признак паропоршневых моторов от паровых машин — иной тип парораспределения. Паропоршневые моторы предназначены для работы с однократным расширением пара: пар из котла поступает параллельно во все цилиндры, подобно тому как поступает топливно-воздушная смесь в цилиндры ДВС. А в классических паровых машинах пар проходит через все цилиндры последовательно и расширяется многократно.

Мировую известность получили немецкие паровые моторы фирмы Spilling. Это одноступенчатые поршневые паровые машины противодавленческого типа с системой золотникового расширения пара, отличающиеся от других современных паровых машин, которые работают по многоступенчатому принципу. К сожалению, у модельного ряда паровых машин Spilling очень узкий диапазон мощности: от 100 кВт до 1,2 мВт. Но ресурс у них довольно большой, и в последние годы компания-производитель предлагает их на российском рынке для установки на мини-ТЭС, работающих на биотопливе, на производствах, где есть возможность и необходимость редуцирования пара с расходом от 2,5 т/ч и на установках для утилизации отходов (ТБО, ТКО и др.). Компания Spilling поставляет паропоршневой двигатель в сборе с электрогенератором как готовый к работе агрегат с системой управления, автоматизации и программным обеспечением. Такой двигатель может также работать на природном газе либо биогазе в качестве детандера. Стоимость 1 кВт установочной электрической мощности при расчетах можно принять от 1500 евро FCA. Основные технические данные паропоршневых двигателей Spilling: электрическая мощность 100-1200 кВт; частота вращения — 750, 900 и 1000 об/мин; давление пара на входе — 4-60 бар, на выхлопе — 0,2-15 бар; температура насыщения пара — до 480°С. Для многих двигателей Spilling в качестве топлива используют биомассу, в первую очередь древесную. Например, на одном из деревообрабатывающих предприятий в Африке установлен трехцилиндровый одноступенчатый паропоршневой двигатель Spilling электрической мощностью 437 кВт с давлением пара на входе 9 бар и на выхлопе 0,5 бар. Отходящий пар используется для обеспечения работы сушильной камеры. После ввода в эксплуатацию этого двигателя предприятие обеспечило себя дешевой электро- и тепловой энергией и, что особенно важно, обрело независимость от поставок электроэнергии из общей сети.

В числе других европейских производителей паропоршневых двигателей можно назвать чешскую компанию Tenza s. a., которая предлагает паровые двигатели мощностью от 10 до 120 кВт, и шведскую компанию Energiprojekt i Sverige AB, которая производит паровые двигатели мощностью от 500 до 1000 кВт с давлением пара на входе 30-60 бар и с заявленным КПД 25-30% (машины работают по термодинамическому циклу Ренкина с регенерацией и полезным использованием теплоты конденсации пара). Австрийская компания Foerdertechnik GmbH производит когенерационные паровые машины электрической мощностью 150 и 300 кВт и тепловой — 110 и 220 кВт соответственно, в топках паровых котлов которых можно сжигать биомассу, в частности щепу. Максимальная температура пара — 350°С, давление — 32 бар, паропроизводительность 200 кг/ч. Но стоимость этих машин, конечно, очень высокая — 280 тыс. и 480 тыс. евро. При такой стоимости эти «золотые» машины можно использовать только в некоторых европейских странах (Австрии, ФРГ и др.), где реализуются масштабные программы поддержки и субсидий ВИЭ и гарантируется оплата генерируемой электроэнергии по «зеленому» тарифу в течение продолжительного времени (до 20 лет). Поскольку в России о таких тепличных условиях можно только мечтать, то ориентироваться нужно в первую очередь на отечественных и азиатских (КНР, Тайвань, Вьетнам и др.) производителей и разработчиков оборудования. В мире производят сегодня и так называемые паровинтовые машины, которые в большей степени можно отнести к категории турбин, только ротор у этих машин не с лопатками, как у классических турбин, а в виде винта Архимеда — в основном цилиндрической или конусно-винтовой формы.

Первый отечественный паропоршневой мотор был спроектирован в Московском авиационном институте (МАИ) в 1936 году и предназначался для силовой установки экспериментального самолета. Двигатель работал на перегретом паре с давлением 6 МПа и температурой 380°С и на оборотах до 1800 об/мин.

В современной России нужно выделить научную группу «Промтеплоэнергетика» МАИ, которая предлагает довольно оригинальное решение вопроса экономически целесообразного применения паропоршневых машин в малой и децентрализованной энергетике России. Разработчики предлагают создавать паропоршневые двигатели на базе серийно выпускаемых дизельных поршневых двигателей. В конструкции ДВС сохраняется почти весь механизм газораспределения, который в ППУ становится механизмом парораспределения, также сохраняется кривошипно-шатунный механизм. Подобный подход обеспечивает низкую стоимость парового двигателя, в отличие от зарубежных аналогов, благодаря тому, что в производстве используются серийные автомобильные двигатели и запчасти к ним. Кстати, понятие «паропоршневые двигатели» впервые было введено в 2003 году именно научной группой «Промтеплоэнергетика» МАИ.

Где использовать паровые машины эффективно?

В качестве объектов, энергетическую эффективность которых можно повысить при использовании современных паровых машин, могут выступать:

  • промышленные и муниципальные котельные с паровыми котлами (паровая машина для привода электрогенератора);
  • паросиловые мини-теплоэлектроцентрали (мини-ТЭЦ), где паровую машину целесообразно устанавливать вместо маломощных паровых лопаточных и винтовых турбин, особенно если электрическая мощность последних до 1,2 МВт и они изготовлены в одноступенчатом варианте или же в многоступенчатом, но без промежуточного отбора пара;
  • технологические производственные установки на предприятиях, где по условиям реализации основных процессов выпуска продукции есть возможность с помощью парового котла-утилизатора использовать сбросное тепло (например, в металлургии подобными установками могут выступать крупные сталеплавильные печи, а в стекольной промышленности — печи для варки стекла, на цементных, консервных и маслоэкстракционных, ликероводочных заводах и во многих других отраслях промышленности). Использование для этого технологии ORC (органического цикла Ренкина) — более дорогое решение, учитывая и то, что модули ORC в России не производятся.

Технологические решения для мини-ТЭС — конденсационных мини-электростанций (мини-КЭС) и мини-ТЭЦ — с использованием современных паровых машин принципиально схожи с известными, реализуемыми на паротурбинных мини-ТЭС. Это комбинированное производство электрической и тепловой энергии (когенерация на мини-ТЭЦ, в т. ч. создаваемых на базе котельных с паровыми котлами) либо так называемая тригенерация (см. рис. 1), т. е. выработка одновременно трех видов энергии (электрической, тепловой и холодильной). В качестве холодопроизводящего оборудования при тригенерации на паросиловых мини-ТЭС используются абсорбционные холодильные машины, для работы которых вполне достаточно отработавшего в паровом двигателе водяного пара. Такой вариант значительно экономичнее, чем выработка холода с помощью электрических кондиционеров.

Читать еще:  Генератор из двигателя стиральной машины своими руками

В качестве заключения

Паропоршневые мини-ТЭЦ, работающие на биомассе, энергоэффективнее паротурбинных, газопоршневых (при работе на генераторном газе, полученном путем газификации биомассы) и дизельных. В паропоршневых мини-ТЭЦ удельный расход пара на выработку электроэнергии в 1,3-1,5 раза меньше, чем в паротурбинных мини-ТЭЦ, особенно при мощности 1200-1500 кВт. Современные паровые поршневые машины вполне могут использоваться в децентрализованной энергетике России. Применяя местные альтернативные виды топлива, в основном древесную биомассу, можно успешно заменить во многих регионах дизель-генераторы паровыми машинами (паропоршневыми установками) и дополнительно получать тепловую энергию, в результате отказаться от северных завозов угля и дизтоплива. Применение ППУ может способствовать энергосбережению при эксплуатации технологических и энергетических установок, в частности тех, у которых при работе выделяется сбросное тепло в виде выхлопных или дымовых газов.

Сергей ПЕРЕДЕРИЙ, Германия,
s.perederi@eko-pellethandel.de

В статье использованы некоторые материалы научной группы «Промтеплоэнергетика» МАИ и кафедры «Атомная и тепловая энергетика» Санкт-Петербургского политехнического университета им. Петра Великого

Как сделать самому

Если требуется небольшое количество энергии, изготовить паровой генератор электричества своими руками можно из небольшого количества подручных материалов.

Для этого понадобится:

  • Банка из под консервов
  • Алюминиевая проволока
  • Небольшой лист жести
  • Крепежные элементы

Сам процесс изготовления довольно прост:

  • В консервной банке проделать два небольших отверстия
  • В одно из них впаять трубку
  • Взять лист жести и разрезать его на небольшие полоски таким образом, чтобы получилась крыльчатка турбины
  • Закрепить готовую крыльчатку на жестяной полоске, предварительно согнутой в виде буквы «П»
  • При помощи крепежных элементов прикрепить полоску с крыльчаткой на втором отверстии. Стоит обратить внимание на то, что крыльчатка должна быть расположена в сторону трубки
  • Все отверстия и швы, сделанные в процессе изготовления установки, запаять. Это необходимо для обеспечения герметичности конструкции
  • Из проволоки изготовить подставку, на которую устанавливается готовое оборудование
  • При помощи шприца система заполняется водой
  • Под подставкой в специальной коробке поджечь сухое горючее

Изготовленная по данной инструкции паровая машина не способна обеспечить дом необходимым количеством энергии. На ней можно доступно и просто ознакомиться с принципом работы парового генератора электричества.

Процесс создания такой установки, которая бы могла обеспечить дом необходимым количеством энергии немного сложнее, но нет ничего невозможного.

Для ее изготовления понадобиться взять основу – элемент Пелетье. Его можно приобрести отдельно в магазине, а можно снять с вышедшего из строя стационарного ПК.

Кроме этого для работы потребуется:

  • Модуль, оснащенный выходом USB
  • Лист металла для изготовления корпуса установки. Его можно сделать самостоятельно, а можно взять уже готовый корпус ПК
  • Охладительный радиатор с кулером
  • Паста для герметизации швов
  • Ножницы для резки металла
  • Заклепочник
  • Дрель
  • Паяльник
  • Заклепки

В начале процесса изготовить небольшую емкость, в которую можно будет заложить мелкие дрова и разжечь костерок. Верхняя часть емкости сконструировать таким образом, чтобы на нее можно было поставить небольшую кастрюльку с водой и довести ее до кипения.

С одной стороны этой емкости прикрепить элемент Пелетье. С другой же при помощи песты прикрепить радиатор охлаждения с кулером.

Специалисты обращают внимание на то, что радиатор и кулер должны быть достаточно мощными. От того насколько большая разница температур, зависит скорость и количество выделения электрической энергии.

Если оборудование используется в холодное время, его можно постаять прямо в снег и проблема будет практически решена. Если же используется установка в теплое время, без мощного охладителя и кулера не обойтись. Нельзя забывать о тщательной герметизации всех швов и креплений.

Стабилизатор напряжения спаять с элементом Пелетье. Этот прибор необходим для того чтобы можно было задать определенный показатель электрической энергии на выходе.

Стабилизатор можно купить уже готовым в магазине. Его преимущество заключается в том, что при достижении необходимого показателя на приборе загорается лампочка.

Немаловажное значение также имеет и то, что уже припаянный стабилизатор необходимо загерметизировать таким образом, дабы полностью исключить попадание на него воды. Эксплуатация данной модели парогенератора способна обеспечить нагрев двух куллеров.

Тэн для парогенератора

Можно также изготовить еще более мощную модель генератора на пару – тэновую.

Ее основой служит довольно большая емкость, в которой монтируются тэны (один или несколько).

Это зависит от предполагаемой мощности будущей установки.

В боковинах емкости просверлить отверстия, с помощью которых прикрепить тэн.

В качестве крепежных элементов отлично подойдут гайки с резиновыми прокладками.

Если планируется установка двух тэнов, важно разместить их таким образом, чтобы они не соприкасались друг с другом. Рядом с первой емкостью установить вторую.

В ней будет находиться вода, которая по мере необходимости перемещается в первую емкость. Необходимо обратить внимание на то, что в процессе работы оборудования нельзя будет открыть крышку и посмотреть уровень воды в первом сосуде.

Поэтому специалисты рекомендуют немного автоматизировать этот процесс, путем установки обычного поплавка, как у сливном бачке унитаза.

Обе емкости соединяются между собой прочной трубкой, которая вставляется в просверленные отверстия, расположенные нижу того уровня, на котором установлены тэны. Все швы тщательно загерметизировать.

Для того чтобы вода быстро прогревалась, лучше трубку, через которую будет подаваться свежая порция воды, скрутить в виде спирали. Перед стационарной установкой и эксплуатацией данной установки, ее необходимо протестировать на течь.

Кроме этого, клапан должен выдерживать необходимое давление, в противном случае оборудование работать не сможет. Созданная по такому принципу установка отличается практически 100% КПД. Но ее необходимо поддерживать в рабочем состоянии.

Для этого необходимо периодически проверять тэны на наличие на их стенках накипи. Если таковой будет слишком много, они могут не работать с полной отдачей или согреть вообще.

Для того чтобы накипи образовывалось, как можно меньше периодически необходимо добавлять в воду первой емкости намного лимонной или уксусной кислоты. Некоторые заливают в бак только специальную мягкую воду.

Нередко случаются ситуации, когда паровой генератор электричества для дома выходит из строя по причине того, что он работал насухую. Дабы избежать такой неприятности, рекомендуется установить метки минимального и максимального количества воды в емкости.

Для того чтобы обезопасить готовую установку от скачкой напряжения в сети, можно установить специальный регулятор напряжения, который при падении напряжения автоматически отключает оборудование.

ПГЭ – это уникальное оборудование, которое является автономным источником электричества. Его эксплуатация в домашних условиях имеет ряд преимуществ:

  • Возможность работы на разных видах топлива, которое для каждого владельца установки является наиболее выгодным.
  • Высокий уровень мощности на выходе.
  • Мощность может регулироваться владельцем по его желанию в ручном режиме. Это повышает экономичность эксплуатации установки.
  • Если в качестве источника энергии выбрано твердое топливо, например, дрова, зола, которая остается поле их использования, служит отличным удобрением для садовых и огородных растений.
Читать еще:  Аккумулятор для дома вместо генератора

Промышленность выпускает подобного рода установки в широком разнообразии. Кроме этого, есть возможность изготовить парогенератор самостоятельно в домашних условиях. Для этого нет необходимости использовать дорогостоящие материалы и детали.

Существуют разные варианты и схемы изготовления подобных установок. Прежде, чем остановить выбор на каком-либо конкретном способе, необходимо учитывать в первую очередь мощность парогенератора, которая необходима на выходе. В процессе создания ПГЭ в домашних условиях, необходимо соблюдать правила безопасности и предварительно протестировать готовую установку.

О том, как самостоятельно собрать парогенератор для бани, можно посмотреть на видео:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Утилизация энергии

Экономичность, надежность и эффективность

Ключевым аспектом технологии «энергия из отходов» является восстановление энергетической составляющей из отходов. Поскольку данная технология обеспечивает низкий уровень выбросов и является в значительной степени возобновляемой, она вносит существенный вклад в сокращение количества образуемых парниковых газов. Восстановленная энергия используется таким образом, который наиболее подходит для нужд заказчика.

Электроэнергия

Проверенное и надежное электропитание

Принцип действия электростанции является общеизвестным, надежным и простым в эксплуатации. Перегретый пар из котла приводит в движение паровую турбину, соединенную с генератором. Электричество, вырабатываемое генератором, подается в электрическую сеть общего пользования. Внутри турбины пар расширяется и охлаждается. После этого он конденсируется в воздухо- или водоохлаждаемом конденсаторе. Обеспечивая замкнутость цикла, конденсат насосом подается в котел в качестве питательной воды и снова превращается в пар.

Комбинация: тепло и электричество

Для бытовых и промышленных потребителей

Одновременное производство тепла и электричества обеспечивает высокую эффективность процесса и максимальный уровень выхода энергии. При наличии выгодного использования тепловой энергии, паровой контур может быть адаптирован в зависимости от требуемого количества тепловой энергии и уровня температур. Хотя высокий уровень потребления теплоты снижает объем производимой электроэнергии, но в целом это повышает общую энергоэффективность ТЭЦ. Полностью резервированная концепция обеспечивает безопасное и надежное снабжение тепловой и электрической энергией круглосуточно 365 дней в год.

Комбинация: холод и электричество

Снабжение электрической сети общего назначения

Концепция комбинированного производства тепла и холода позволяет использовать тепловую энергию в странах, где кондиционирование воздуха востребовано больше чем теплоснабжение. Концепция полностью резервированной установки обеспечивает безопасное и надежное снабжение холодом 24 часа в сутки 7 дней в неделю в течение всего года. Перегретый пар из котла приводит в движение паровую турбину, соединенную с генератором. Электричество, вырабатываемое генератором, подается в электрическую сеть общего пользования. Часть пара отбирается из турбины под высоким давлением. Этот пар приводит в движение адсорбционные холодильные установки, которые преобразуют тепловую энергию в холодную воду, которая может подаваться потребителям, например, через сеть центрального холодоснабжения. Остальная часть пара полностью расширяется в турбине и конденсируется в воздухо- или водоохлаждаемом конденсаторе. Количество отбираемого пара, используемого для охлаждения, может варьироваться в зависимости от потребностей.

Чем еще могут удивить когенерационные ТЭЦ, использующие Муфту SSS?

Благодаря блоку «Фортуна» городские коммунальные службы г. Дюссельдорф повысили общий объем вырабатываемой энергии с целью покрытия потребностей тепла и электричества города. ТЭЦ расположена в порту г. Дюссельдорф и использует воду из р. Рейн для охлаждения. Вопреки повышению объема произведенной энергии, потребности в воде для охлаждения не повысились. Когенерационный режим работы станции в сочетании с использованием бака-аккумулятора позволяет держать объем воды для охлаждения на прежнем уровне, а то и снизить его. Беспрерывный мониторинг температуры р. Рейн подтвердил, что работа станции Лаусвард не влечет за собой повышения температуры воды реки.

Власти г. Дюссельдорф планируют привязать остальных поставщиков тепла к общей сети и использовать общий аккумулятор тепла. Таким образом Аэропорт Дюссельдорф (DUS) и химико-промышленный гигант Henkel получат возможность сохранять избыточно произведенное тепло в одном аккумуляторе. Городские службы г. Дюссельдорф, в свою очередь, могут сохранять невостребованное теплосетью избыточное тепло мусоросжигающего завода.

Блок «Фортуна» нуждается в регулярном техобслуживании. Применение Муфты SSS ускоряет работы по техническому обслуживанию, снижая тем самым косвенные расходы. Сама обгонная Муфта SSS не требует трудоемкого обслуживания и рассчитана служить дольше чем сама станция. Муфта SSS прочна, надежна и сертифицирована на среднее время безотказной работы (MTBF), превышающее 270000 часов.

Подводя итог вышесказанному, данная образцовая станция служит идеальным примером сверхконкурентоспособной и энергоэффективной концепции по когенерации и должна быть принята во внимание операторами ПГУ и инвесторами для обеспечения долгосрочной рентабельности станций.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector