Rkrem.ru

Большая стройка
10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пельтье генератор

Элементом Пельтье называется термоэлектрический тип преобразователя, который базируется на температурной разности при протекании электричества. Суть открытого в 1834 г. эффекта в том, что тепло выделяется или поглощается в участке контактирования разнородных проводников, подключенных к электричеству.

Что собой представляет элемент Пельтье

К сведению! По этой теории электрический ток осуществляет перенос электронов между металлами. Если увеличить кинетическую энергию, то она превратится в тепловую.

Принцип действия модулей

На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.

Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).

Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.

Модуль «Пельтье»

Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.

Схема принципа работы модуля

В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.

Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.

Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.

На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.

Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.

Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.

На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.

Как выглядит структура модуля

Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.

В качестве полупроводников применяется теллурид висмута и германид кремния.

Достоинства и недостатки ТЭМ

К преимуществам термоэлектрического модуля (ТЭМ) относят:

  • малые размеры;
  • возможность работы, как охладителей, так и нагревателей;
  • обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
  • отсутствие подвижных элементов, которые обычно изнашиваются.

Недостатки модулей:

  • малый КПД (2-3%);
  • необходимость создания источника, обеспечивающего температурный перепад;
  • значительное потребление электроэнергии;
  • высокая стоимость.

Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:

  • охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
  • использование каскадов ТЭМ, позволяющих добиться низкой температуры;
  • создание компактных холодильников, например, для автомобилей;
  • термоэлектрогенератор для зарядки мобильных устройств.

Как работает?

Генератор работает на основе модуля Пельтье. Одна часть этого модуля постоянно нагревается, а другая — охлаждается. Если нагретую часть охлаждать, а охлажденную нагревать, то за счет перепадов температур можно генерировать электрический ток, которого будет достаточно для работы небольшого прибора.

Читать еще:  Генератор электрического тока газовый для частного дома

Почему же у сторон модуля разная температура? Этот прибор сделан из пластин двух разных металлов. Один из них имеет много электронов на своей поверхности, а другой — очень мало. С первой пластины негативно заряженный частицы пытаются перейти на другую. Но поскольку два элемента соединены проводником, электроны не могут преодолеть этот барьер и скапливаются на поверхности первой пластины нагревая ее.

Если эту часть охладить, то частицы смогу перейти на другую пластину, занимая на ней пустые места. При значительном скоплении электронов на этой стороне, они постепенно начинают перебираться на первую и так далее. Таким образом, получится поток электронов. А как известно, электрический ток — это и есть движение электронов в определенном направлении.

Как же сделать термоэлектрический генератор самостоятельно?

Конечно же, дома данное устройство использовать никто не будет. Поэтому если вы идете в длительный поход, то стоит запастись всем необходимым для того чтобы сделать генератор. А понадобятся:

  • элемент Пельтье;
  • преобразователь;
  • нагреватель;
  • холодильник;
  • провода.

Элемент Пельтье покупаем или делаем своими руками. Желательно выбирать тот, который выдерживает высокие температуры приблизительно до 3500С. Поскольку даже небольшое превышение температурного режима может привести к непригодности прибора.

Модуль Пельтье

Наличие преобразователя необходимо для получения постоянного тока, поскольку генератор может продуцировать ток со скачками напряжения. Если планируете заряжать гаджеты, выбирайте с USB-входом.
Нагреватель и холодильник необходимы для получения большего количества энергии. Это могут быть обычные консервные банки, но нужно учитывать их размеры и размеры элемента Пельтье. А без наличия проводов конструкция просто не будет работать.

Итак начинаем собирать генератор термоэлектрический. Берем две консервные банки или кастрюли разной величины. Если это кастрюли, то стоит отпилить заранее ручки. Донышки емкостей нужно хорошо отполировать. Вставляем меньшую в большую, между ними помещаем термоэлектрический генераторный модуль. Его можно приклеить термопастой для надежности.

Термоэлектрический генератор из жестяных банок

К модулю обязательно присоединить провода и преобразователь. Не нужно забывать об изоляции. В меньшую емкость наливаем холодную воду (зимой можно использовать снег или лед) и всю конструкцию помещаем на огонь. И все. Через некоторое время получаем такую необходимую электрическую энергию. Не забываем добавлять холодную воду, чтобы разница температур была больше. При этом и энергии будет больше.

Термоэлектрический генератор своими руками сделать несложно, но использовать такое устройство нужно с осторожность и придерживаясь правилам безопасности. Если купить готовый прибор, то он будет намного надежнее, им легче пользоваться. Пригодность генератора, как и срок хранения неограничен.

Модуль Пельтье своими руками.

Как уже упоминалось выше главный элемент можно сделать самостоятельно. Для этого будут необходимы:

  • две керамические пластины;
  • биметаллические проводники, желательно 12, можно больше;
  • провода;
  • паяльник.

Схема модуля Пельтье

Проводники соединяются между собой с помощью паяльника и припоя. Далее, конструкция размещается между двумя керамическими пластинами и прочно фиксируется. Обязательно нужно помнить о двух проводах, которые будут в дальнейшем крепиться к преобразователю электрического тока.
Поскольку данный модуль имеет еще и сторону, которая охлаждается, то его можно применять и для холодильных установок. Используя этот элемент, изготавливают небольшие автомобильные холодильники для путешествий, автомобильные охладители, кондиционеры.

Данный принцип применяется и в охладительных системах компьютерной техники (охлаждение чипов видеокарт и микропроцессоров).В некоторых кулерах питьевой воды обе стороны модуля задействованы, поскольку можно получить на выходе как охлажденную, так и хорошо нагретую жидкость.

Принципы данного модуля используются в приборах ночного виденья, в новейших цифровых фотоаппаратах, для стабилизации частоты излучения в лазерах, в телескопах с инфракрасными детекторами, которые нужно быстро и эффективно охлаждать. То есть этот элемент нашел свое применение не только в так называемых бытовых условиях, но и для военных и научных приспособлений и установок.

Плюсы и минусы термоэлектрического модуля.

Казалось бы, это незаменимый элемент, но и здесь есть свои нюансы. Прибор имеет достоинства и недостатки.
К плюсам можно отнести:

  • небольшие размеры;
  • возможность работы как нагревательным, так и охлаждающим элементом;
  • отсутствие частей, которые постепенно изнашиваются и требуют замены;
  • бесшумность работы.

Из минусов можно отметить:

  • высокую себестоимость;
  • необходимость поддерживать перепад температуры;
  • большое потребление энергии;
  • низкий уровень КПД.

Но несмотря на все недостатки модуль целесообразно использовать в тех случаях, когда большая энергоемкость не имеет особого значения.
Сомнений не остается если правильно выполнить сборку термоэлектрического генератора, то можно пережить любые катаклизмы в результате которых будет отключена электроэнергия.

Присоединив небольшой вентилятор, можно немного охладиться в жаркое время года. Горячая сторона поможет нагреться, приготовить пищу, вскипятить воду. А вырабатываемое электричество подзарядит средства связи (мобильные телефоны, радиоприемники или рации).

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Qmax), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DTmax), параметр приводится для идеальных условий, единица измерения — градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – Imax;
  • максимальным напряжением Umax, необходимым для тока Imax, чтобы достигнуть пиковой разницы DTmax;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского — coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Результат

Несмотря на низкий КПД элемента Пельтье в режиме генерации, промежуточный результат я все же получил – при подключении к выходу преобразователя портативного аккумулятора с заявленным током заряда 1000 мА генератор смог дать ток около 600 мА. Думаю, для зарядки большинства гаджетов в условиях Большого Песца этого тока вполне хватит.

По приезду вентилятора (Ибей обещает середину марта-начало апреля) проверю охлаждение. Плюс нужно будет протестировать работу генератора в «боевых» условиях – на костре.

За качество фотографий извиняюсь — фотограф из меня никакой. Ссылка на вдохновившую меня статью: тыц.

Продукции

  • Термоэлектрические Пельтья/охладители
  • Драйверы лазерных диодов
  • Термоэлектрические модули
  • Терморезисторы
  • Термоэлектрические генераторы
  • Радиаторы
  • Термостабилизированная платформа
  • Теплопроводящие материалы
  • Наборы чип-резисторов
  • Наборы чип-конденсаторов
  • Наборы чип-индуктивностей
  • Касса для хранения чип-элементов
  • Магазины сопротивлений и емкостей
  • Светодиодная продукция
  • Приборы для измерения
  • Высоковольтные источники питания
  • Сигнализатор землетрясения

Термоэлектричество — это совокупность явлений, в которых электрический потенциал возникает разницы температур, или же разница температур создается электрическим потенциалом.

Термоэлектрический модуль — устройство, состоящее из твердотельных полупроводниковых элементов, преобразующих тепловую энергию в электричество (эффект Зеебека), либо выполняющих перенос тепловой энергии т.е. охлаждение и нагревание разных сторон термоэлектрического модуля, с помощью электрической энергии (эффект Пельтье). Эти свойства термоэлектрического модуля (эффект Зеебека) используются в термоэлектрических генераторах (ТЭГ) и в термоэлектрических охлаждающих установках (эффект Пельтье).

Основным элементом термоэлектрического модуля является активная структура, которая представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. Наиболее распространенным полупроводниковым материалом для активной структуры (термопар) является теллурид висмута. Активная структура помещается между двумя электроизолированными пластинами — теплопроводами. Термоэлектрическая система (ТЭС) представляет собой устройство, выполненное в виде нескольких скрепленных между собой теплообменников, между которыми установлены термоэлектрические модули. В зависимости от назначения различают охлаждающие, термостабилизирующие и генерирующие ТЭС.

Термоэлектрические устройства, производимые по технологии CERATOM®, выполнены с применением наноструктурированных композитных материалов и лишены недостатков, присущих керамическим аналогам, обладая при этом высоким коэффициентом полезного действия и конкурентоспособной стоимостью. К примеру, уникальная система прямого принудительного охлаждения корпуса твердотельного лазера позволяет снизить ее вес на 15–30%, уменьшить температурный перегрев активных элементов и дополнительно увеличить мощность твердотельных полупроводниковых приборов на 50%.

Охлаждающие и генерирующие термоэлектрические системы

Схема охлаждающего модуля на основе элемента Пельтье нового поколения — CERATOM® (TERMIONA). Сравнение элементов Пельтье, созданных по классической технологии и технологии CERATOM®.

Преимущества технологии CERATOM®:

  • идеальный тепловой контакт с радиатором,
  • высокая тепловая и механическая прочность слоев,
  • стала возможна полная автоматизация производства.

Ключевую роль в достижении уникальных качеств ТЭС CERATOM ® с наноструктурными теплопроводами и тонкими высококачественными барьерно-коммутационными слоями, играют используемые нанотехнологические решения. К ним относятся технология микродугового оксидирования, вакуумно-плазменные технологии (PVD) и управление параметрами этих процессов.

Открытое акционерное общество «РОСНАНО» создано в марте 2011 года путем реорганизации государственной корпорации «Российская корпорация нанотехнологий». ОАО «РОСНАНО» содействует реализации государственной политики по развитию наноиндустрии, выступая соинвестором в нанотехнологических проектах со значительным экономическим или социальным потенциалом. Основные направления: опто- и наноэлектроника, машиностроение и металлообработка, солнечная энергетика, медицина и биотехнологии, энергосберегающие решения и наноструктурированные материалы. 100% акций ОАО «РОСНАНО» находится в собственности государства. Председателем правления ОАО «РОСНАНО» назначен Анатолий Чубайс.
Задачи государственной корпорации «Российская корпорация нанотехнологий» по созданию нанотехнологической инфраструктуры и реализации образовательных программ выполняются Фондом инфраструктурных и образовательных программ, также созданным в результате реорганизации госкорпорации.

Фонд инфраструктурных и образовательных программ создан в 2010 году в соответствии с Федеральным законом № 211-ФЗ «О реорганизации Российской корпорации нанотехнологий». Целью деятельности Фонда является развитие инновационной инфраструктуры в сфере нанотехнологий, включая реализацию уже начатых РОСНАНО образовательных и инфраструктурных программ.
Председателем высшего коллегиального органа управления Фонда — наблюдательного совета — является вице-президент Сколковского института науки и технологий (Сколтех) Алексей Пономарев. Согласно уставу Фонда, к компетенции совета, в частности, относятся вопросы определения приоритетных направлений деятельности Фонда, его стратегии и бюджета. Председателем Правления Фонда, являющегося коллегиальным органом управления, является председатель Правления ОАО «РОСНАНО» Анатолий Чубайс, генеральным директором Фонда — Андрей Свинаренко.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector