Rkrem.ru

Большая стройка
14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор частот

Ко мне прямиком из Китая приехал генератор частот. Как вы видите, он представляет из себя довольно таки солидный прибор.

На лицевой панели генератора частот мы видим множество различных кнопок и крутилок. Эта крутилка предназначена для того, чтобы уменьшать или увеличивать амплитуду сигнала.

Эти кнопки предназначены для изменения формы сигналов.

Здесь можно увидеть такие сигналы, как

Далее с помощью кнопок можно выбрать нужный диапазон, а также подключить какой-либо внешний сигнал.

Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора частоты, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.

Далее идут разъемы.

VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит нам о том, что мы можем менять частоту сигнала с генератора частоты, подавая на этот разъем какое-либо напряжение. В зависимости от того, какая будет амплитуда подаваемого напряжения, такая и будет частота на выходе генератора частоты.

TTL OUT. ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.

Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.

OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.

Также небольшой интерес могут представлять из себя кнопки

Написано “attention”, что значит “внимание”. На самом деле там должно быть написано “attenuator”. Аттенюатор – слово не наше, означает как “ослабить, смягчить”. Видать, китайцы сэкономили на переводчике с китайского на английский ). Итак, что за кнопочки -20dB и -40dB? dB – это децибелы. А пока вот вам ссылочка на онлайн-калькулятор. Я за вас уже все посчитал. -20dB это значит, что мы можем ослабить выдаваемый генератором сигнал в 10 раз. -40dB – в 100 раз. А если нажмем сразу на 2 кнопочки разом, то у нас в сумме получится -60dB. Следовательно, мы можем ослабить сигнал в 1000 раз.

Самовывоз

Забрать продукцию можно со склада «Акбар» в г. Махачкала, ул. Ирчи Казака 37 а. Торговый дом “Акбар”

Доставка

По Дагестану при оформлении заказа до 11:00, доставка будет осуществлена на следующий рабочий день. Если заказ оформлен после 11:00 – срок доставки составит 2 рабочих дня.

  • для мало- и среднегабаритного груза весом до 25 кг. стоимость доставки составляет 500 руб.
  • для среднегабаритного груза и груза весом от 25 кг. до 50 кг. стоимость доставки составляет 1000 руб.
  • для крупногабаритного груза и груза весом более 50 кг. – стоимость доставки уточняйте у менеджера

в регионы России мы отправляем грузы любыми транспортными компаниями и экспресс-курьерами. До терминала транспортной компании доставка осуществляется бесплатно. Стоимость перевозки до пункта назначения можно рассчитать на сайтах транспортных компаний.

Стоимость доставки рассчитывается индивидуально.

I. Включение резервного питания

Генераторы

При пропадании питания на вводе, автоматика даёт команду на старт двигателя генератора. Если старт произошел успешно, идет прогрев, а затем напряжение с электростанции подается в дом. Всё это занимает от 10 до 120 секунд в зависимости от типа генератора и настроек АВР. За это время домашний сервер уйдет в перезагрузку, система видео наблюдения работать не будет, у современного газового котла может нарушится программа или возникнуть ошибка, лифт в доме застрянет. Кстати, часто для решения этих проблем используют ИБП с минимальным временем автономной работы. Какие бывают сложности с запуском?

  1. У генератора разрядился пусковой аккумулятор – стартер не крутит.
  2. Генератор давно не заводился и поэтому возникли проблемы с подачей топлива: заливает свечи, карбюратор “закис” или завоздушился.
  3. Недостаточный уровень масла в двигателе.
  4. Забыли заправить бак после прошлого срабатывания.
  5. Возникла проблема с приводом заслонок
  6. Электростанция заработала, но возникли проблемы с охлаждением, и по перегреву она аварийно отключилась.
  7. Выработан моторесурс и т.п.
Читать еще:  Как проверить якорь генератора мультиметром


ИБП

Инвертор переходит на работу от АКБ за один полупериод синусоиды, т.е. максимальное время – 20мс. Иными словами, оборудование “не почувствует” момента переключения: персональный компьютер не перезагрузится, газовый котел продолжит работу без остановок. ИБП типа On-line переключается на работу от аккумуляторов за 0 сек. – даже лампочки не моргнут. Вероятность перехода на питание от АКБ стремится к 100%, так как в отличие от сложной системы пуска генератора, в инверторе за переключение отвечает быстродействующее силовое или твердотельное реле, которое рассчитано с большим запасом прочности.

Вывод №1. При отключениях бесперебойники имеют преимущество: время переключения минимально, практически исключена вероятность несрабатывания.

Режимы работы генератора

Импульсный режим

Импульсный режим служит для определения мест повреждения кабелей, делится на подрежимы ручного и автоматического импульсного запуска. Селекторный переключатель режимов позволяет переключаться между позициями «Нулевое положение» (инициирование одиночного импульса), «Последовательность длинных импульсов» и «Последовательность коротких импульсов» даже во время работы и под напряжением. Ручной импульсный запуск предназначен для применения генератора импульсного напряжения при предварительной локации неисправностей кабелей, например, при совместном использовании с блоком связи SA 32 (опция) и рефлектометром. Применяя метод вторичного импульса для обнаружения неисправностей с большим сопротивлением, можно оценить расстояние до места повреждения с помощью одного или нескольких импульсных запусков. Автоматическое инициирование импульсов используется для точного определения мест повреждения в кабелях. Генератор SSG 500 оборудован таймером, привязанным к промышленной частоте, который позволяет автоматически инициировать импульсы с частотами следования 10 имп./мин. и 20 имп./мин. Регуляризация импульсов применяется для лучшего различения между сигналами от места повреждения и помехами.

Режим постоянного тока

Генератор импульсного напряжения можно перевести в режим постоянного тока с помощью селекторного переключателя режимов. Определение мест повреждения — при работе в режиме постоянного тока с присоединёнными импульсными конденсаторами напряжение возрастает до тех пор, пока не произойдёт пробой кабеля в месте повреждения. Этот режим работы особенно рекомендуется для оценки напряжения пробоя, которое требуется при выборе оптимального диапазона для инициирования импульсов. При использовании генератора SSG 500 с блоком SA 32 и рефлектометром, режим постоянного тока может применяться для предварительной локации неисправностей кабелей. Испытания — в режиме постоянного тока также можно выполнять электрические испытания. Однако важно, чтобы конденсаторы в случае пробоя разряжались через место повреждения, и чтобы генератор импульсного напряжения переключался на режим прожига. Прибор самостоятельно защищает себя от перегрузок, автоматически отключаясь через определённое время с помощью выключателя защиты от перегрузки. В кратковременном режиме максимальный выходной ток в процессе прожига повреждения можно определить при помощи следующей таблицы.

Прозрачный океан будущего – насколько это реально?

Искусственный интеллект, рои дронов, новые системы обнаружения, сверхмощные и компактные генераторы импульсов, корабли без экипажа – каким будет завтрашний день военно-морских сил любой страны?

Читать еще:  Расчет мощности генератора для дома

Опасные берега

Этим вопросом задаются, возможно, во всех развитых странах мира и не только разработчики оружия и военные эксперты. Интересное мнение выразил Эндрю Дэвис из любимого нами «The National Interest».

Дэвис полагает, что в свете развития современных средств борьбы с кораблями, последним скоро будет все сложнее подходить к береговой линии любого развитого государства без угрозы получения урона.

Логично. Два-три десятка гиперзвуковых ракет, выпущенные с береговых установок, будут стоит неизмеримо меньше, чем, скажем, авианосец, который они поразят. Да, современные средства флотского ПВО могут отразить удар либо уменьшить его урон. А могут и не отразить.

В любом случае, береговая линия отодвигается от того места, где море встречается с сушей (для кораблей), до того места, куда долетят противокорабельные ракеты берегового базирования.

И за этой гипотетической линией дорогостоящим кораблям с многочисленными экипажами просто нечего делать.

А кораблям без экипажа? А кораблям, у которых есть возможность скрытно подходить к берегам?

Во втором случае, понятно, речь идет о подводных лодках, а не о «стелс»-фрегатах или эсминцах.

А вполне может получиться и так, что рои беспилотных аппаратов (необязательно летающих), управляемые искусственным интеллектом, поддерживаемые спутниками на орбите, оснащенные новыми системами обнаружения и обработки сигналов, смогут окончательно и бесповоротно отправить в прошлое саму идею маскировки и скрытного перемещения корабельных группировок и отдельных кораблей.

И чего тогда будут стоить, скажем, десантные корабли, которые не смогут подойти к месту высадки, или патрульные корветы, не имеющие возможности преследовать подводную лодку?

Получается, что лучший способ нивелировать эту проблему – это построить как можно больше управляемых на расстоянии недорогих боевых платформ, потеря которых не скажется ни на бюджете, ни на людском потенциале.

Это, правда, совершенно не решает вопросов проведения десантных операций, так или иначе связанных с подходом к береговой линии.

С подводными лодками дело может обстоять тоже довольно своеобразно.

Сеть из беспилотных аппаратов слежения, развернутая в определенном районе и подключенная через спутники к системе искусственного интеллекта, вооружена, например, квантовой системой обнаружения.

Квантовый магнитометризм

Собственно, работы над квантовыми радарами воздушного базирования уже ведутся рядом стран. Квантовая магнитометрия – тоже вполне реальная вещь. Немецкая компания Fraunhofer-Gesellschaft уже год ведет работы по созданию именно магнитометра на квантовом приводе (разработки общества «Фрайбургские институты Фраунгофера»).

Вообще, у немцев была несколько иная задача, чем обнаружение подводных лодок, но и атомная бомба появилась несколько раньше атомной электростанции.

Вопрос в том, что любой подводной лодке будет очень проблематично уйти от внимания такой сети обнаружения, оснащенной квантовыми магнитометрами, способными уловить даже небольшие магнитные поля. А коль речь идет о современном подводном крейсере…

Вопрос только в решении проблемы энергоснабжения и размеров магнитометра.

И здесь на выручку могут прийти разработки такой сугубо мирной организации, как Deep-ocean Assessment and Reporting of Tsunamis (Служба предупреждения о цунами), входящей в National Oceanic and Atmospheric Administration (NOAA). Мировой океан и так усеян датчиками этой организации. А спутники NOAA неусыпно принимают их сигналы, обрабатывая поступающую информацию в целях предупреждения о цунами, тайфунах, ураганах и прочих природных катаклизмах.

То есть уже имеется с чего начать. Какая разница, что отслеживать – зарождающуюся волну или атомный ракетоносец под ней?

Магнитометру все равно. Субмарину обнаружить проще. Так что эксперты (например, Роджер Брэдбери из австралийского национального университета) считают, что «прозрачный океан» — это реальность. И к концепции построения флота необходимо подходить иначе, чем раньше.

Но это не значит, что подводные лодки полностью или частично сойдут со сцены. Наоборот, скорее надводные корабли, перемещение которых невозможно будет скрыть, уйдут в историю, как ушли линкоры. За ненадобностью.

Читать еще:  Самодельный импульсный бестопливный генератор энергии

Понятно, что не все. Все-таки определенная часть кораблей поддержки и ударных кораблей сохранится. Но подводные лодки не просто останутся, а их роль будет еще более значимой. Времена, когда беспилотные аппараты с магнитометрами заполонят океаны, наступят еще не скоро. А потому есть смысл, считает Брэдбери, уделить внимание именно развитию подводных лодок. Подводная лодка, которая сможет противостоять новым средствам слежения – это очень сильный ход в тактике и стратегии будущего.

Сетецентрические баталии

Соответственно, на первое место среди надводных кораблей выходит корвет. Не авианосец, не крейсер, не эсминец. Небольшой дешевый корвет, способный выследить и уничтожить подводную лодку совместно с беспилотными аппаратами.

То есть, у нас получается картина следующего плана: корвет, который при помощи различных дронов, корректируя свои действия через спутники с другими аппаратами слежения и обнаружения, будет выслеживать подводные лодки противника.

А что подводные лодки? Просто будут прятаться на глубине?

У каждой подводной лодки есть торпедные аппараты, через которые лодка тоже может выпустить свои беспилотные аппараты, которые, поднявшись ближе к поверхности воды, будут ставить помехи аппаратам противника, работать как приманки, генерируя акустические или магнитные сигнатуры, или осуществлять коммуникацию со своими спутниками для определения того, где находятся корабли противника.

То есть все то, что сегодня мы называем сетецентрическими войнами. Но с упором на то, что основой на море станет противолодочная война и удары, наносимые подводными лодками.

Безэкипажники

И тут буквально один шаг до флотов, состоящих из беспилотных кораблей. От дрона-катера до «Посейдона». Действительно, а почему бы не построить флот из безэкипажных кораблей? А на то место в корабле, которое занимает система жизнеобеспечения экипажа, будут установлены «мозги» и дополнительный запас топлива, увеличивающий автономность.

И авианосцы в таком случае могут быть использованы не только как носители ударных самолетов, но и как платформы для доставки таких аппаратов, управляя ими через спутники с безопасного расстояния от того самого берега, к которому нет смысла подходить.

Все то же самое верно и для подводных лодок. Все начинается с носителя подводных аппаратов, как российская К-329 «Белгород». А чем закончится – сказать очень сложно.

Но по факту, в ближайшие несколько десятилетий, мы сможем очевидно стать свидетелями непростой битвы конструкторов за увеличение рабочей глубины для подводных лодок, насыщения их беспилотными аппаратами самого разного назначения и, вполне естественно – появления и развертывания на поверхности воды новых средств слежения за подводными лодками.

Здесь можно согласиться с Дэвисом и Брэдбери в том, что следующий виток эволюции – это создание новых (и не менее смертоносных) кораблей и аппаратов, суть которых сводится только к одному – контролю за территориями и возможным воздействием на противника. Ничего нового.

  1. ИМС LM358N в корпусе SO8 (DA1), 1 шт.
  2. Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
  3. Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
  4. Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
  5. Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
  6. Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.

Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.

Файл печатной платы в формате Sprint Layout 5.0 можно скачать по ссылке.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты