Rkrem.ru

Большая стройка
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ГАЗ Газель пневмо турбо дизель акпп › Бортжурнал › генератор как двигатель

ГАЗ Газель пневмо турбо дизель акпп › Бортжурнал › генератор как двигатель

после долгих дискуссий с tamp решился на эксперимент подключения генератора к генератору, чтоб снять нагрузку с генератора

еще вопрос про четвертую пару диодов, на что они влияют?
вообще вот к чему все


Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:
  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:
  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

    По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:
  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:
  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа &lt Iном) и магнитная система двигателя не насыщена (Ф

Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Читать еще:  Какой генератор выбрать для дома

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

    Преимущества:
  • высокий момент на низких оборотах
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • низкий момент на высоких оборотах
  • дороже КДПТ ПМ
  • плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

    Преимущества:
  • хорошие регулировочные свойства
  • высокий момент на низких оборотах
  • менее вероятен выход из под контроля
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • дороже других коллекторных двигателей

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Принцип работы

Все современные ветряки работают по проверенному веками принципу ветряной мельницы. Только в данном случае энергия вращения лопастей передается не на механический привод, а на генератор, при вращении ротора которого вырабатывается электричество. Затем электроэнергия накапливается в блоке аккумуляторных батарей и через инвертор передается к потребителям. Для обеспечения электроснабжения большого количества потребителей требуется объединение ветряков в единую сеть.

Для изготовления ветряка применены следующие элементы:

  • Лопасти;
  • Ротор турбины;
  • Редуктор;
  • Контроллер;
  • Ось электрического генератора;
  • Генератор
  • Инвертор;
  • Аккумулятор.

Для изготовления пропеллера можно использовать практически любые материалы, обеспечивающие достаточную парусность. Это может быть парусный ветряк из прочной ткани, ветряк из бочки или пластиковых бутылок. При изготовлении миниатюрной установки ветряк можно сделать даже из бумаги.

При изготовлении ветряка своими руками можно использовать ротор из шуруповерта или двигатель от любой бытовой техники. Для изготовления самодельного генератора для ветряка подойдет шаговый двигатель от принтера, а автомобильный генератор можно использовать практически без переделки.

Электрическая схема генератора на шаговом двигателе

С появлением на российском рынке неодимовых магнитов, популярность приобрела схема изготовления низкооборотистого аксиального генератора для ветряка на этих магнитах.

Подключение ветряка к генератору

При изготовлении своими руками ветряка мощностью до 3 кВт и рабочим напряжением 220В можно воспользоваться идеей разработки российской компании Аэрогрин. В конструкции данного ветряка применен принцип роторной авиационной турбины. В качестве лопастей используются небольшие лопатки из полимерных материалов. Вся конструкция укрыта кожухом из звукопоглощающего материала. Такой ветряк не тратит энергию на поиск ветра, создает минимум шума и не раздражает соседей постоянно вращающимися лопастями.

Многие ставят себе один и тот же вопрос, как установить генератор на мотоблок без АКБ? Дабы поставить аппарат своими руками, желательно соблюдать некоторые правила и знать, из чего состоит аппарат.

Читать еще:  Стабилизатор напряжения для генератора как выбрать

  1. Корпус ‒ это стальной контейнер.
  2. Шкив ‒ является проводником механической энергии.
  3. Регулятор напряжения.
  4. Ротор ‒ изготовленные из стали вал и две втулки, между которыми находится обмотка.
  5. Щеточный узел ‒ изготовлен из пластмассы и занимает немаловажное место в исправном функционировании генератора.
  6. Статор ‒ классическая перемотка, внутри нее вырабатывается мощность.

Дабы поставить автомобильный генератор на мотоблок, не потребуется много сил и времени, но к этому следует отнестись ответственно.

Поскольку от этого будет зависеть работоспособность техники в целом. Генератор монтируется к мототехнике посредством специальной схемы, где указаны все соединения. В случае неправильного подключения обмотка может загореться. Установка генератора на мотоблок своими руками осуществляется благодаря двум проводам. В целом в блоке находится 4 проводка, в том числе 2 голубых. Именно через два голубых проводка подключается преобразователь. Затем красный проводок, подпитывающий фары и заряжающий. Созданию поможет следующий чертеж.

Качество топлива

Бензин, как известно, на российских просторах можно найти сильно разнообразный: иногда по качеству похожий на чай, заваренный на три кружки одним пакетиком.

Для двигателя никакой радости бензин такого качества не принесет, заставит его и почихать и повыть, да и скорость заберет. Но работать — будет. Так что вы сможете своим ходом дойти до хорошей колонки. Максимум — придется свечи продуть и воду слить. Это не очень хорошо, но не так критично, как для дизеля.

Замешанный с водой дизель заставит двигатель замолчать, а вас — сильно напрячься на пути в мастерскую, где придется проводить капитальный ремонт топливной аппаратуры.

Чтобы избежать неприятных моментов, в идеале нужно обзавестись сепаратором, фильтром с отстойником и датчиком на воду. А в совсем тяжелых случаях, когда выручил трактор или теплоход и в емкости плещется что-то мутное непонятного цвета, лучше дать топливу отстояться хотя бы несколько часов: верхний слой — в бак, что осталось — выливаем. «Отстояться» можно и на легком ходу, процесс разложения происходит быстрее благодаря вибрации.

Генератор для ветряка из автогенератора

Генератор является таким же основным элементом ветряка, как и крыльчатка. Если лопасти рабочего колеса преобразуют энергию ветра во вращательное движение, то генератор вращение превращает в электроэнергию. Его конструкция и возможности определяют производительность и мощность установки, способность работы на слабых потоках ветра.

При изготовлении ветряков вопрос об использовании самодельного или готового генератора встает практически всегда. Чаще всего к решению подходят комбинированным способом — используют готовый автомобильный генератор, иногда без конструктивных изменений, но чаще всего — с некоторыми доработками, повышающими чувствительность или выходную мощность.

Автомобильные генераторы представляют собой готовые устройства, созданные для выработки электрического тока заданного напряжения. Оно постоянно на выходе, что обеспечивает стабилизатор (регулятор) напряжения, удерживающий значения в узких рамках. Единственная особенность, требующая вмешательства, это режим работы — автомобильные генераторы приводятся от двигателя и работают на больших скоростях.

Причем, скорость вращения двигателя автомобиля не постоянна, она меняется на протяжении всего времени работы в значительных пределах — от 800 об/мин до 6000 об/мин, а иногда и больше. Кроме того, автомобильный генератор имеет предел по силе тока, превысить который устройство не сможет ни при каких обстоятельствах.

КПД автогенераторов не превышает 60%, что объясняется наличием потерь в конструкционных узлах, расходом энергии на токи Фуко. Чем выше общая мощность устройства, тем выше его КПД. Производится переменный ток, который преобразуется в постоянный при помощи диодного выпрямителя.

Выбор конструкции ветроколеса

Ветряное колесо — самая важная часть ветрогенератора. Именно оно преобразует энергию ветра в механическую. И от его конструкции зависит выбор всех остальных узлов, например, генератора электрического тока.

Наверняка, всем хорошо знакома форма ветряных колёс старинных ветряных мельниц. Это как раз тот случай исключение, когда всё забытое старое не всегда хорошо. Такие ветроколёса ветряной мельницы имеют очень низкий КИЭВ порядка 0,10-0,15, что намного меньше КИЭВ современных быстроходных крыльчатых колёс, которое достигает 0,46. Всё потому, что низкие познания в аэродинамике старинных мастеров не позволяли им сконструировать более совершенную конструкцию.

На рисунке изображена работа двух типов лопастей: парусной (1) и крыльчатой (2). Для того чтобы сделать парусную лопасть (1), достаточно просто прикрепить листовой материал к оси, расположив под углом к ветру, то есть по аналогии с ветряными мельницами древности. Но при вращении такой лопасти она будет иметь значительное аэродинамическое сопротивление, которое возрастает с увеличением угла атаки. Также на её концах образуются завихрения, и за лопастью возникает зона пониженного давления. Всё это делает парусные лопасти неэффективными ветровыми движителями.

Читать еще:  Как выбрать бензиновый генератор для дома

Гораздо более эффективной является лопасть крыльчатого типа (2). При такой форме лопасти, которая похожа на крыло самолёта, потери от трения и разрежения сведены к минимуму. Что касается угла атаки лопасти, то на практике установлено, что наиболее оптимальный угол составляет 10-12º. При более высоком угле атаки прирост мощности в результате более высокого давления ветра на лопасть не покрывается ростом аэродинамических потерь.

Конечно, есть много других интересных типов ветровых двигателей, например, вертикально-осевые роторы Савониуса или роторы Дарье. Но все они имеют более низкие коэффициенты использования энергии ветра при более высокой материалоёмкости (в сравнении с крыльчатыми колёсами). Например, установка с ротором Савониуса диаметром 2 метра и высотой 2 метра при тихом ветре 4 м/с будет иметь полезную мощность 20 Вт. Такую же мощность выработает шестнадцатилопастный крыльчатый винт диаметром всего 1 метр.

Поэтому мы не будем «изобретать велосипед» и сразу за основу возьмём конструкцию, где используются лопасти крыльчатого типа с горизонтальной осью вращения. Именно этот тип ветряного двигателя имеет максимальный КИЭВ при минимальном расходе материалов. Неудивительно, что такая конструкция используется почти в 99% всех действующих промышленных ветровых электростанциях.

Прежде всего, нужно выбрать число лопастей. Наиболее дешевыми являются двух- и трёхлопастные ветроколёса, но они являются быстроходными и обладают следующими недостатками:

— высокие рабочие обороты приводят к возникновении больших центробежных и гироскопических сил. Гироскопические силы нагружают ось генератора, крепления и мачту, а центробежные стремятся разорвать лопасти на части. Так, окружная скорость концов лопастей быстроходных двухлопастных ветроколёс нередко достигает 200 м/с и более. Для сравнения скорость пули, выпущенной из винтовки Бейкера 1808 г., равнялась 150 м/с. Таким образом, осколки разлетающегося сломанного винта могут ранить или даже убить человека. По этой причине никому не рекомендуется изготавливать лопасти высокоскоростных ветроколёс из пластиковой трубы. Для этих целей лучше подходит более прочная на растяжение древесина. Изготовление же лопастей из дерева весьма трудоёмкий процесс.

— известно, что чем быстрее вращаются лопасти, тем больше сила трения о воздух. Поэтому лопасти быстроходных ветроколёс гораздо более требовательны к аэродинамическому качеству изготовления. Даже небольшие погрешности сильно снижают КИЭВ быстроходных лопастей. Крайне нежелательно делать быстроходные лопасти вогнутыми, они должны иметь форму крыла самолёта. Изготовить же лопасти тихоходного винта гораздо проще для любителя. Нужно сильно «постараться», чтобы сделать лопасть для тихоходного винта из разрезанной трубы с КИЭВ хуже 0,3.

— быстроходные ветродвигатели издают сильный шум при вращении, ведь даже аэродинамически высококачественные лопасти при быстром вращении создают значительные зоны сжатий и разряджений воздуха, а кустарно изготовленные лопасти и подавно. Соответственно, чем больше окружная скорость и размеры лопасти, тем больше шум. Поэтому мощный быстроходный ветряк нельзя просто установить на крыше дома или в огороде при плотной застройке, иначе Вы рискуете просыпаться ночью от шума взлетающего вертолёта и испортить отношения с соседями в придачу.

— чем меньше лопастей у ветроколеса, тем больше вибрации. Поэтому ветроколёса с малым числом лопастей (2-3) будет труднее сбалансировать.

Учитывая все эти недостатки быстроходных ветроколёс, для более-менее мощного «ветряка» лучше выбрать число лопастей не менее 5-6.

Теперь основываясь на данных табл. 1, давайте прикинем, какой максимальной длинны лопасти подойдут для изготовления несложной электростанции. Очевидно, шестилопастный винт диаметром 2,5-3 м будет сложен в изготовлении. Представьте себе хотя бы процесс балансировки такого винта и его установку на мачту, которая в свою очередь должна быть довольно прочной, чтобы выдержать вес такого винта и аэродинамические нагрузки. А вот шестилопастный винт диаметром 2 метра или около того будет по силам энтузиасту для изготовления своими руками.

Возможно у кого-то возникнет соблазн, не посчитаться с затратой материалов и ещё больше увеличить количества лопастей для увеличения полезной мощности ветроустановки. Так, при числе лопастей двухметрового винта равным 12 мощность при «свежем» ветре (8 м/с) достигнет почти 500 Вт. Но такое дорогое ветряное колесо получиться слишком тихоходным, а значит, неизбежно потребует применения отдельного редуктора, что сильно усложнит конструкцию ветровой электростанции.

Таким образом, наиболее оптимальной является конструкция винта ветрогенератора диаметром 2 м и количеством лопастей равным 6.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector