Rkrem.ru

Большая стройка
63 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Самодельный асинхронный генератор

Самодельный асинхронный генератор

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Устройство генераторов

Как известно генераторы бываю синхронными и асинхронными.

Асинхронные дешевле, но, к сожалению, говорить о приемлемом качестве электричества в данном случае нельзя. К тому же при подключении такой нагрузки, как электродвигатель (холодильник, насос, электроинструмент) в момент запуска потребляет кратковременно 1,5-3 кратную мощность, поэтому нужно делать соответственный запас по мощности выбираемой генераторной установки. Асинхронный генератор не переносит пиковых перегрузок.

Устройство синхронных генераторов отличается более высоким качеством электричества, а также способны переносить 3-кратные мгновенные перегрузки. В профессиональных и стационарных электростанциях устанавливаются только синхронные генераторы.

Синхронные генераторы — менее точны, но, тем не менее, они пригодны для аварийного электропитания офисов, холодильных установок, оборудования загородных домов, дач, строительных объектов. Такие электрогенераторы без проблем справляются с энергоснабжением электроинструментов и электродвигателей с реактивной нагрузкой до 65% от своего номинала.

Асинхронные генераторы обеспечивают поддержание напряжения в сети с высокой точностью, поэтому позволяют подключать к ним аппаратуру, чувствительную к перепадам напряжения (например, медицинское оборудование, другие электронные устройства). Подобные генераторы позволяют подключать к ним электроинструменты и электродвигатели с реактивной мощностью до 30% от номинала.

Принцип работы генератора

Отличия между синхронными и асинхронными генераторами

Синхронный генератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС.

Читать еще:  Принцип работы асинхронного генератора переменного тока

В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин.

Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля.

Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR.

Преимуществом устройства генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать.

Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный генератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора.

В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным. Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков:

  • асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки;
  • ненадежность работы в экстремальных условиях;
  • возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной;
  • зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Подробно о разновидностях электростанций можно прочитать в статье виды генераторов.

Если у Вас все еще остались вопросы по устройству и принципу работы генераторов , то позвоните в отдел продаж по телефону: 8 (800) 302-15-41 — наши специалисты обязательно Вам помогут!

Принцип работы

Во время вращения лопаток ротора на токопроводящей части его начинает появляться электрический ток. Образующееся магнитное поле, наводит на обмотки статора два типа переменного напряжения – однофазное и трехфазное.

Регулировка параметров вырабатываемой энергии осуществляется изменением нагрузки на статоре. Регулятор в схеме отсутствует, т.к. конструктивно устройство не может быть оборудовано данным узлом: отсутствует электрическая связь между ротором и статором.

В каких случаях необходимо применение асинхронных устройств:

  • тяжелые условия работы оборудования – запыленность;
  • нет особых требований к качеству преобразованной энергии (величины частоты и напряжения);
  • нет возможности установки синхронной машины;
  • ограниченный бюджет объекта;
  • существует вероятность перегрузок в переходном процессе работы.

Асинхронные устройства не терпят частых перегрузок во время работы. При работе с завышенной мощностью срабатывает защита. Повторный запуск устройств оказывает негативное влияние на экономический эффект установки.

Т.к. отсутствует регулятор параметров, необходимо подключение измерительных приборов.

Для корректной работы системы и исключения преждевременных ремонтов, необходимо произвести расчет мощности генератора, исходя из предполагаемой нагрузки объекта.

Принцип работы в двухфазном режиме асинхронного генератора применяется для случаев, которые не требуют генерации трехфазного напряжения.

Преимущества:

  • малая рабочая емкость;
  • низкие нагрузки в режиме холостого хода, и как следствие, экономия первичного энергоносителя (ресурс, который приводит в действие ротор).

Недостатки:

  • отсутствует регулятор напряжения тока.

Принцип работы синхронного электрогенератора

Основные этапы:

  • При вращении ротора двигателем внутреннего сгорания начинается вращение поля электромагнита.
  • В результате вращения магнитного поля в статорной обмотке появляется переменное синусоидальное напряжение – одно- или трехфазное. Значение напряжения генерируемого тока зависит от скорости вращения ротора.
  • Изменение электрической нагрузки синхронного генератора меняет механическую нагрузку на валу двигателя внутреннего сгорания. В свою очередь, это изменяет скорость вращения ротора, а значит, изменения величины напряжения и частоты. Избежать таких изменений параметров генерируемого электротока позволяет блок управления, который автоматически регулирует электрические характеристики через обратную связь.

Трехфазный синхронный генератор может работать в режиме генератора или в режиме двигателя. В первом случае в СГ входящей является механическая энергия, а выходящей – электрическая. Во втором случае – входящей является электрическая энергия, а выходящей – механическая.

Разновидности синхронных генераторов

Конкретная область применения определяет, какой вид синхронного генератора купить.

Производители предлагают электрогенераторы:

  • Шаговые (импульсные). Применяются для приводов, работающих в режиме старт-стоп, или для устройств постоянного режима работы с импульсным сигналом управления.
  • Безредукторы. Используются в автономных системах.
  • Бесконтактные. Востребованы в качестве электростанций на речных и морских судах.
  • Гистерезисные. Предназначены для установки в счетчиках времени, инерционных электрических приводах, системах автоматизированного руководства.
  • Индукторные. Используются для оснащения электрических установок.
Читать еще:  Из каких частей состоит генератор переменного тока

Области применения синхронных трехфазных генераторов переменного тока

Важная особенность синхронного генератора – возможность синхронизации с другими подобными электрическими машинами. Это свойство позволяет использовать эти машины в промышленной энергетике и при повышении нагрузок в час пик подключать резервные агрегаты.

Трехфазные генераторы применяют на:

  • тепловозах с выпрямлением переменного тока полупроводниковыми элементами и других транспортных системах;
  • мощных гидро-, тепловых электростанциях, атомных станциях, передвижных электростанциях;
  • гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей.

Синхронные трехфазные генераторы могут использоваться в качестве электромоторов с мощностью более 50 кВт. В этом режиме ротор соединяют с источником постоянного тока, а статор подключают к трехфазному кабелю.

В каких случаях необходимо купить и использовать синхронный генератор?

Синхронный генератор переменного тока выбирают в следующих случаях:

  • Если предъявляются высокие требования к постоянству параметров напряжения и частоты тока.
  • При высокой вероятности перегрузок в переходном режиме потребителей с реактивной мощностью.
  • При вероятности перегрузок в рабочем режиме, когда к генератору подключаются потребители как с активной, так и с реактивной мощностью.

Преимущества использования синхронных генераторов

Плюсы трехфазных синхронных генераторов:

  • Способность выдерживать перегрузы в электросети, превышающие в три раза номинальное значение, и короткие замыкания.
  • Более высокое качество генерируемой электроэнергии, по сравнению с асинхронными генераторами. Поэтому эти электрические машины используются для работы в комплексе с дорогостоящим оборудованием.
  • Наличие автоматических регуляторов напряжения, регулирующих выпрямителей, которые защищают оборудование от перегруза и коротких замыканий и способны отключать электроустановки в случае возникновения аварийных ситуаций.

Современные электрические генераторы изготавливаются в соответствии с требованиями мировых стандартов качества и безопасности.

На какие характеристики двигателя еще нужно обратить внимание

Для надежной и стабильной работы генератора, сделанного своими руками, важны определенные технические характеристики двигателя. Они указаны на наклейке или же в паспорте (если он есть). Важные моменты, это:

  • Класс защиты (обозначение IP). Чем меньше цифра — тем лучше корпус привода защищен о проникновения пыли и влаги.
  • Мощность.
  • Количество оборотов.
  • Схема сочетания витков обмотки статора.
  • Максимальные нагрузочные токи.
  • Коэффициент полезного действия.
  • Пусковой ток (коэффициент фи).

Все это следует выяснить, а если мотор старый и много лет использованный, то его нужно протестировать вольтметром, амперметром и «прозвонить» на предмет рабочего состояния.

Альтернатор генератора: синхронный (щеточный) или асинхронный (бесщеточный) — принцип работы и особенности

Выбор генератора всегда был не самым простым вопросом и не так уж редко даже те, кто не понаслышке был знаком с такого рода оборудованием сталкивался с проблемами при выборе и уж что говорить о неподготовленном потребителе. Существует множество аспектов при выборе генератора для лома или же для промышленного применения, все эти аспекты необходимо знать и в равной степени уделять им внимание для формирования верного выбора агрегата, чтобы он мог полностью удовлетворить Вас своей работой.

Сегодня мы будет говорить о том, чтобы верно подобрать генератор исходя от того, какой тип альтернатора на него установлен, для того, чтобы выбранный Вами генератор обеспечивал Вас стабильным напряжением и не имел сбоев в своей работе. На первый взгляд вопрос очень сложный, но все не так страшно как кажется, выбор будет колебаться между всего двумя видами генераторов, синхронный, то есть щеточный, или асинхронный, бесщеточный альтернатор. Сегодня чаще всего покупаются модели именно с синхронным альтернатором, и почему Вы поймете далее. Надеемся, что сможем как можно лучше посвятить Вас в этот вопрос данной статьей.

Все об альтернаторе

Для начала стоит сказать немного о самом названии, в самом начале, когда технология, служащая для выработки электрического тока так и называлась, альтернатор, позже его стали называть генератор, весь, и альтернатор и двигатель и другие его части в сборе, это название проще и отражает саму суть работы такого агрегата – преобразование одного вида энергии в другой.

Что же касается самого альтернатора, то можно с полной уверенностью сказать что именно он является самой важной частью в любом генераторе, ведь именно от отвечает за самую важную работу этого агрегата, а именно преобразование кинетической работы, продуцируемой вращением вала двигателя в электрический ток переменного типа. Состоит альтернатор из подвижной и неподвижной части, как и любой электродвигатель, из статора и ротора.

Вращение в альтернаторе производится за счет электродвижущей силы, а для возникновения оной необходимо возбудить магнитное поле на обмотке. В этом плане между альтернаторами разнице нет, разница лишь в том, в какой способ электромагнитное поле передается на а обмотку статора, а именно на синхронные и асинхронные. В конструктивном плане разница в том, что синхронный альтернатор имеет обмотку на роторе, в то время как асинхронный не имеет ее и способы передачи соответственно у них разные.

Если не углубляться в теорию и рассмотреть строение альтернаторов, то коротко говоря у синхронного альтернатора более сложное строение за счет наличия и щеток, и обмоток на роторе и статоре, а асинхронный по конструкции более простой по конструкции. Считается, что последний менее надежен и менее вынослив, но это еще не делает его хуже, чем первый, все зависит от того, в каких условиях применяется генератор, есть множество факторов, которые могут поменять их местами или уровнять.

Читать еще:  Ветроэлектростанция своими руками из автомобильного генератора

Достоинства синхронного альтернатора

Есть разница между тем, какой обмоткой будет обладать Ваш альтернатор, если же Вы хотите купить генератор для редких включений, и Вы не намерены подавать на него слишком большую нагрузку, то есть смысл сэкономить деньги и купить алюминиевый тип, если же работать генератор будет часто и должен будет выдерживать достаточно высокую нагрузку, то стоит подумать о медной обмотке. Альтернатор с медной обмоткой будет давать максимально качественный ток на выходе. Важная часть синхронного альтернатора – это щетки, именно они отвечают за снятие тока со статора на ротор. Главное преимущество такого альтернатора – это возможность выдерживать пиковые нагрузки и кратковременные перепады и выдавать качественное электричество на выходе, что и делает его столь востребованным. Также стоит отметить, что только с таким генератором будет совместима система AVR. Синхронный генератор будет более правильным выбором для работы в бытовых условиях, для запитки дома или другого объекта с чувствительной к перепадам технике. Стоит отметить и высокую стоимость такого оборудования, такой генератор будет стоить дороже генератора с асинхронным альтернатором.

Недостатки синхронного альтернатора

Главным недостатком синхронного альтернатора можно назвать то, что он требует достаточно тщательного технического обслуживания. Щетки необходимо периодически заменять, график замены напрямую зависит от того, какие щетки установлены на альтернатор, угольные изнашиваются быстрее, медно-графитовые изнашиваются дольше. Помимо того, что у щеточного узла есть такой расходный материал как щетки, требующие периодической замены, сам альтернатор греется из-за трения щеток о ротор, и поэтому требует наличия охлаждения и тут есть побочный эффект.

Для охлаждения двигателя применяется вентилятор, который всасывает воздух и охлаждает обмотку, а вместе с воздухом он тянет и пыль, грязь и даже влагу. Более дорогие модели имеют достаточно высокий класс защиты для того, чтобы оградить альтернатор от влаги и пыли, но полностью защититься невозможно.

Преимущества асинхронного альтернатора

Преимущество асинхронного альтернатора заключается в том, что он имеет более простую конструкцию, а с этим и стоимость его меньше. Для движения подвижной части не требуется щетки для снятия электричества, достаточно магнитного поля и конденсаторов. Стоит отметить высокую степень защиты и отсутствие необходимости в сервисном обслуживании. Так как такой альтернатор нагревается намного меньше синхронного, отпадает необходимость в охлаждении, благодаря чему его конструкция более уплотненная, что позволило предотвратить попадание пыли, грязи и влаги внутрь альтернатора. Это делает его долговечным и надежным. Вес и физические размеры асинхронного альтернатора также намного меньше, чем у синхронного, так что и сам генератор компактнее. Также ощутимым преимуществом такого генератора будет в том, что его альтернатору не страшны короткие замыкания, что делает его хорошим вариантом для работы со сварочным оборудованием.

Недостатки асинхронного альтернатора

Помимо положительных сторон у него также есть и отрицательные стороны, которые заключаются в том, что выходящее напряжение не самого высокого качества, оно может скакать, а так как этот тип альтернатора несовместим с работой AVR, это может существенно отразится на его работе в бытовых условиях, например для запитки дома. Стоит отметить, что низкий уровень качества тока и скачки напряжения на выходе у асинхронного генератора вызвано тем, что он плохо переносит стартовые пиковые нагрузки от аппретуры, подключаемой к нему, и это может вызвать плачевные последствия для техники, очень чувствительной к перепадам напряжения, например компьютеры, телефоны и другая электроника.

Помните, что не все асинхронные генераторы имеют очень большие скачки напряжения на выходе, хороший проверенный бренд всегда будет устанавливать на свой генератор только самый надежный двигатель, который будет поддерживать постоянное число оборотов при скачках нагрузки, обеспечивая минимальные отклонения от нормы в работе генератора.

Подведение итогов, какой альтернатор выбрать: синхронный или асинхронный

При выборе между синхронным и асинхронным альтернатором стоит отталкиваться от того, в каких условиях будет применяться генератор и какие цели будут перед ним стоять и уже от этого отталкиваться при выборе.

Для того чтобы обеспечить свой дом или дачу стабильным электричеством, без перепадов и резких скачков, то стоит конечно же купить генератор синхронный, или щеточный, так как он будет давать на выходе ровное напряжение и качественный ток, что очень важно при подключении чувствительной аппретуры. Также такой генератор пригоден для работы с медицинским оборудованием, лабораторным или офисным оборудованием. Для всех этих целей старайтесь покупать модели с функцией AVR.

Если же главная цель генератора – это строительные работы на открытом воздухе, где большая загрязненность, пыль и влага, то стоит купить генератор с асинхронным альтернатором, который имеет большую устойчивость ко всем этим факторам. К тому же он пригоден для работы со сварочным оборудованием, так как исключен риск короткого замыкания при работе такого оборудования.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты