Rkrem.ru

Большая стройка
76 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование скорости вращения корпусного вентилятора для системного блока персонального компьютера

Регулирование скорости вращения корпусного вентилятора для системного блока персонального компьютера

в разделе «Статьи» на сайте

www.electrosad.ru

Существует множество схем аналогичных устройств, но все они имеют те или иные недостатки. В статье рассмотрен расчет простейшей схемы ручной регулировки с гасящим резистором и схема устройства с автоматическим управления в зависимости от температуры воздуха в системном блоке. Преимущество последнего в выходе на номинальные обороты при изменении температуры на 10°С и падении напряжения на управляющей элементе менее 0,25 В.

Все регуляторы скорости вращения осевого вентилятора постоянного тока, индукторного типа с питающим напряжением 12 вольт построены на принципе управления напряжением, питающим его электромотор. Это регулирование осуществляется в функциональной зависимости то температуры воздуха, в рассматриваемых вентиляторах. Возможно управление по числу оборотов, но это сильно усложняет схему.

Главным условием устойчивого запуска и вращения осевого вентилятора является наличие на нем питающего напряжения не менее 6-6,4 вольта (Иногда производители указывают в технических характеристиках минимальное рабочее напряжение 7 вольт). Это и есть минимальное напряжения, на которое рассчитывается гасящий резистор. При этом напряжении, потребляемый вентилятором ток составляет 0,5-0,55 I ном вентилятора. Величина гасящего резистора определяются по формуле:

R = (Uпит – 6,4 / 0,5 · I пит) / 0,5 · I пит

где: U пит, I пит – паспортные значения, указаны на этикетке вентилятора. Выбирается переменный резистор номиналом R г и с мощностью рассеяния:

Данный резистор позволит осуществлять ручную регулировку оборотов вентилятора до 60% от номинала, и может применяться для снижения оборотов, а значит и шума вентилятора, когда температура охлаждаемого объекта (радиатора, системного блока) низка. Схема включения показана на рисунке 1.

Денисов П. К. в [ Л.2 ] описал применение терморезисторов с отрицательным температурным коэффициентом в качестве регулятора. Моя практика показала, что в достаточно холодных корпусах (+2 — 10°С над температурой окружающего воздуха), уменьшение величины сопротивления терморезистора составляет около 10 — 30 %, что просто недостаточно для вывода вентилятора на полные обороты (паспортную производительность).

Для автоматического следящего управления оборотами вентиляторов предлагается схема изображенная на рисунке 3. Конструктивно она выполнена на стеклотекстолитовой плате размером 100х80 мм и крепление позволяет установить ее в свободный 3 или 5 дюймовый отсек системного блока. На плате установлены: 1 разъем типа PC Plug (XT4) 4х контактный для подключения к блоку питания компьютера и 3 разъема типа Molex 3х контактные. Один, XT 2 – для подключения управляемого вентилятора, другой XT 3 – для подключения кабеля транслятора данных тахометра на материнскую плату и третий XT 4 – для подключения датчика температуры.

Потенциометр ручной регулировки скорости вращения вентилятора может быть установлен на крышке занимаемого регулятором отсека системного блока.

На рисунке 3 видно, что регулирующий транзистор установлен на площадку из фольги. Такая установка обязательна, так как мощность, им рассеиваемая 0,7-1 Вт температура кристалла транзистора приближается к предельной. Что в условиях «горячего» системного блока, где устанавливается данный регулятор, может привести к выходу из строя регулятора.

На схеме, датчик температуры VD 1 подключен к преобразователь ток-напряжение на транзисторе VT 1. Для снижения влияния помех на высокоомный датчик температуры на точках подключения его к преобразователю включены два керамических конденсатора С1,С2 емкостью 47 нФ. Сам преобразователь питается от параметрического стабилизатора собранного на резисторе R 5 и стабилитрона VD 2. Наличие данного стабилизатора обязательно, при его отсутствии преобразователь усиливает пульсации напряжения питания, а не ток датчика.

Напряжение пропорциональное температуре датчика выделяется на цепочке резисторов R 6, R 7, один из которых переменный предназначен для выбора рабочей точки регулятора. Сигнал управления с движка резистора поступает на усилитель VT 2, VT 3 , особенность которого в том, что при отсутствии сигнала управления его нормальное состояние – минимальное напряжение на нагрузке, вентиляторе определяемое стабилитроном VD 5. А сигнал управления отсутствует при температуре воздуха менее 20° C . Туда же поступает сигнал ручного управления с делителя R 1, R 2, R 3. Для исключения взаимного влияния схем ручной и автоматической регулировки использованы диоды VD 3, VD 4.

Рассмотрим некоторые особенности регулятора

В качестве датчика температуры воздуха в схеме применен германиевый диод работающий на обратной ветви, ввиду его свойств — удвоения теплового тока при изменении температуры на каждые 10°С. В некоторых схемах применяется температурная зависимость прямого тока диодов, но она мала и составляет порядка 1,6-2мв/градус и поэтому требует сложных схем управления. Для преобразования теплового тока диода-датчика в сигнал управления, в предлагаемой схеме, используется усилитель на транзисторе VT 1 с отрицательной обратной связью по току, что снижает крутизну соотношения ток нагрузки – температура в области высоких температур рабочего диапазона и упрощает настройку.

Другой особенностью схемы является простейший из известных, способ ограничения минимального напряжения на выходе схемы. Для этого применен стабилитрон VD 5 включенный между базой и эмиттером регулирующего транзистора VT 3. При выполнении условия U эк VT 3 > U ст + U бэ VT 3 этот стабилитрон открывается, и напряжение на выходе регулятора остается на уровне U пит- U эк VT 3 или U н = U пит – ( U ст + U бэ VT 3). При напряжениях превышающих напряжение открытия стабилитрона силовой транзистор открывается, и схема управления отключается, и наоборот действие этой цепочки прекращается при снижении падения напряжения на силовом транзисторе и действует только схема управления.

И, наконец, третьей особенностью предложенной схемы является наличие ручного управления оборотами вентилятора с помощью переменного резистора R 2. При этом обороты вентилятора можно только повысить от установленного схемой автоматического управления вплоть до максимальных оборотов, что защищает охлаждаемый объект от перегрева.

И последнее, падение напряжения на открытом регулирующем транзисторе, в данной схеме, составляет менее 0,25 вольта. Это позволяет обеспечить практически паспортное значение максимального расхода воздуха через вентилятор.

В течении года работы на нескольких компьютерах схема показала удобства эксплуатации и надежность работы.

Заключение

И в конце статьи, я бы рекомендовал в схемах управления, где затруднен пуск вентилятора на малых оборотах (в том числе и в электронных схемах), применить шунтирование управляющей схемы конденсатором емкостью от 1000 до 10000 мкф, на напряжение питания вентилятора. Для вентиляторов разной мощности конденсатор 1000,0 мкф обеспечит кратковременную подачу на вентилятор полного напряжения питания, что обеспечивает его устойчивый пуск на малых оборотах. После чего конденсатор заряжается до напряжения падающего на регуляторе, реобасе или ограничивающем резисторе.

Поэтому рабочее напряжение конденсатора должно быть более напряжения питания — 15 V .

Это время колеблется от 0,1 до 0,01 сек в зависимости от мощности вентилятора для конденсатора 1000,0 мкф.

данное решение позволяет при включении подать на вентилятор на короткое время, пока конденсатор заряжается, полное напряжение питания и вентилятор до перехода в малооборотный режим (управляемый) трогается с места и начинает вращаться.

Это решение раньше было широко известно и использовалось. Спасибо Денисову П. К. напомнившему о таком решении проблемы.

Программа Setup BIOS фирмы AWARD Software International Inc на системных платах GIGABYTE TECHNOLOGY

Название данной опции у данного производителя в данной версии BIOS:

CPU Smart FAN Control значение по умолчанию [Enabled]
Обозначение опции BIOSОписание опции в БИОСеПереведенное значение опции БИОС
[Enabled]CPU Fan speed is not Fixed and varied According to CPU Temperature[Включено] Скорость вентилятора процессора не является фиксированной и изменяться в соответствии с температуры процессора
[Disabled]CPU Fan is Always Running at Highest Speed[Отключено] Вентилятор процессора всегда работает на самой высокой скорости

Технологии шумопонижения в Intel Core 2 Duo

Новые многоядерные процессоры компании Intel (в том числе и Core 2 Duo) имеют относительно низкое энергопотребление и, как следствие, выделяют меньше тепла. Эту особенность можно использовать по-разному: либо для того, чтобы разогнать систему, либо, наоборот, для понижения шума от работы системы охлаж­дения.

Настройка BIOS в материнских платах для Core 2 Duo (например, на чипсете i975Х) несложная — она заключается в активизации таких дополнительных функций, как Intel SpeedStep (понижение энергопотребления в режиме простоя процессора), и технологии AI Quiet (интеллектуальное управ­ление вентиляторами с целью снижения шума).

В тихом режиме работы (Silent mode) в компьютере с обычной системой охлаждения даже после нескольких часов температура процессора не поднимается выше 35-40 °С, а в системе с пассивным охлаждением процессор нагревается до 50-55 °С. Температура жестких дисков редко превышает 40-45 °С, а температура в корпусе устанавливается на уровне 35-40 °С. Это очень хорошие результаты для современных ком­пьютеров с учетом того, что при действительно бесшумном режиме работы циркуляция воздуха в корпусе очень слабая.

Увеличение/уменьшение скорости вращения кулеров

Основы, важное примечание

Вообще, на современном компьютере (ноутбуке) скорость вращения кулеров устанавливает материнская плата, на основе данных от датчиков температуры (т.е. чем она выше — тем быстрее начинают вращаться кулеры ☝) и данных по загрузке.

Параметры, от которых отталкивается мат. плата, обычно, можно задать в BIOS.

В чем измеряется скорость вращения кулера

Она измеряется в оборотах в минуту. Обозначается этот показатель, как rpm (к слову, им измеряются все механические устройства, например, те же жесткие диски) .

Что касается, кулера, то оптимальная скорость вращения, обычно, составляет порядка 1000-3000 rpm. Но это очень усредненное значение, и сказать точное, какое нужно выставить — нельзя. Этот параметр сильно зависит от типа вашего кулера, для чего он используется, от температуры помещения, от типа радиатора и пр. моментов.

Способы, как регулировать скорость вращения:

  1. в настройках BIOS (как в него войти). Этот способ не всегда оправдан, т.к. в BIOS нужно заходить, чтобы изменить те или иные параметры (т.е. тратить время, а изменять значения часто требуется оперативно). К тому же, технологии автоматической регулировки (типа Q-Fan, CPU Fan Control, Fan Monitor, Fan Optimize и т.д.) — не всегда работают оптимально (раскручивая кулер на максимум там, где это ненужно).
  2. физически отключить шумящий кулер или установить реобас (спец. устройство, позволяющее регулировать вращение кулера) . Этот вариант также не всегда оправдан: то отключать кулер, то включать (когда понадобиться), не самая лучшая затея. Тот же реобас — лишние расходы, да и не на каждый компьютер его установишь;

  • с помощью специальных утилит. Одна из таких очень известных утилит — это SpeedFan . На мой взгляд, один из самых простых и быстрых вариантов отрегулировать скорость вращения кулеров, установленных на компьютере. В том же BIOS отображаются не все кулеры, например, если оный подключен не к материнской плате. Именно на ней и остановлюсь в этой статье.
  • Способ 1: регулировка с помощью SpeedFan (универсальный вариант)

    Бесплатная многофункциональная утилита, позволяющая контролировать температуру компонентов компьютера, а также вести мониторинг за работой кулеров. Кстати, «видит» эта программа почти все кулеры, установленные в системе (в большинстве случаев) .

    Кроме этого, можно динамически изменять скорость вращения вентиляторов ПК, в зависимости от температуры компонентов.

    Все изменяемые значения, статистику работы и пр., программа сохраняет в отдельный log-файл. На основе них, можно посмотреть графики изменения температур, и скоростей вращения вентиляторов.

    SpeedFan работает во всех популярных Windows 7, 8, 10 (32/64 bits) , поддерживает русский язык (для его выбора, нажмите кнопку «Configure», затем вкладку «Options», см. скриншот ниже).

    Выбор русского языка в SpeedFan

    Главное окно и внешний вид программы SpeedFan

    После установки и запуска утилиты SpeedFan — перед вами должна появиться вкладка Readings (это и есть главное окно программы — см. скриншот ниже ) . Я на своем скриншоте условно разбил окно на несколько областей, чтобы прокомментировать и показать, что за что отвечает.

    Главное окно программы SpeedFan

    1. Блок 1 — поле «CPU Usage» указывает на загрузку процессора и его ядер. Рядом также располагаются кнопки «Minimize» и «Configure», предназначенные для сворачивания программы и ее настройки (соответственно). Есть еще в этом поле галочка «Automatic fan speed» — ее назначение автоматически регулировать температуру (об этом расскажу чуть ниже) ;
    2. Блок 2 — здесь располагаются список обнаруженных датчиков скорости вращения кулеров. Обратите внимание, что у всех у них разное название (SysFan, CPU Fan и пр.) и напротив каждого — свое значение rpm (т.е. скорости вращения в минуту). Часть датчиков показывают rpm по нулям — это «мусорные» значения (на них можно не обращать внимание *) .
    3. Кстати, в названиях присутствуют непонятные для кого-то аббревиатуры (расшифрую на всякий случай): CPU0 Fan — вентилятор на процессоре (т.е. датчик с кулера, воткнутого в разъем CPU_Fan на мат. плате) ; Aux Fun, PWR Fun и пр. — аналогично показывается rpm вентиляторов подключенным к данным разъемам на мат. плате;
    4. Блок 3 — здесь показана температура компонентов: GPU — видеокарта, CPU — процессор, HDD — жесткий диск. Кстати, здесь также встречаются «мусорные» значения, на которые не стоит обращать внимания (Temp 1, 2 и пр.) . Кстати, снимать температуру удобно с помощью AIDA64 (и др. спец. утилит);
    5. Блок 4 — а вот этот блок позволяет уменьшать/увеличивать скорость вращения кулеров (задается в процентном отношении) . Меняя проценты в графах Speed01, Speed02 — нужно смотреть, какой кулер изменил обороты (т.е. что за что отвечает) .

    Важно!

    Список некоторых показателей в SpeedFan не всегда будет совпадать с тем кулером, которым он подписан. Дело все в том, что некоторые сборщики компьютеров подключают (по тем или иным соображениям), например, кулер для процессора не в гнездо CPU Fan.

    Поэтому, рекомендую постепенно изменять значения в программе и смотреть на изменения скорости вращения и температуры компонентов (еще лучше, открыть крышу системного бока и визуально смотреть, как изменяется скорость вращения вентиляторов) .

    Настройка скорости вращения вентиляторов в SpeedFan

    Вариант 1
    1. В качестве примера попробует отрегулировать скорость вращения вентилятора процессора. Для этого необходимо обратить внимание на графу » CPU 0 Fan» — именно в ней должен отображаться показатель rpm;
    2. Далее поочередно меняйте значения в графах «Pwm1», «Pwm2» и др. Когда значение изменили — подождите некоторое время, и смотрите, не изменился ли показать rpm, и температура (см. скрин ниже) ;
    3. Когда найдете нужный Pwm — отрегулируйте скорость вращения кулера на оптимальное число оборотов (о температуре процессора я высказывался здесь , также рекомендую для ознакомления) .

    Вариант 2

    Если вы хотите, чтобы был задействован «умный» режим работы (т.е. чтобы программа динамически меняла скорость вращения, в зависимости от температуры процессора ), то необходимо сделать следующее (см. скриншот ниже):

    1. открыть конфигурацию программы (прим.: кнопка «Configure») , затем открыть вкладку «Скорости» ;
    2. далее выбрать строчку, которая отвечает за нужный вам кулер (необходимо предварительно найти экспериментальным путем, как рекомендовал в варианте 1, см. чуть выше в статье) ;
    3. теперь в графы «Минимум» и «Максимум» установите нужные значения в процентах и поставьте галочку «Автоизменение» ;
    4. в главном окне программы поставьте галочку напротив пункта «Автоскорость вентиляторов» . Собственно, таким вот образом и регулируется скорость вращения кулеров.

    Режим автоскорости вентиляторов

    Желательно также зайти во вкладку «Температуры» и найти датчик температуры процессора.

    В его настройках задайте желаемую температуру, которую будет поддерживать программа, и температуру тревоги. Если процессор нагреется до этой тревожной температуры — то SpeedFan начнет раскручивать кулер на полную мощность (до 100%)!

    Способ 2: с помощью утилиты MSI Afterburner (регулировка кулера видеокарты)

    Вообще, эта утилита предназначена для разгона видеокарт (однако, в своем арсенале имеет опции для записи видео, тонкой подстройки кулера, функцию вывода FPS на экран и др.).

    Разумеется, все функции утилиты здесь я не рассматриваю, ниже приведу только краткое решение текущей задачи (кстати, MSI Afterburner работает не только на устройствах от «MSI») .

    1) После запуска MSI Afterburner, нужно зайти в его настройки — кнопка «Settings» .

    MSI Afterburner — открываем настройки программы

    2) Далее во вкладке «Основные» порекомендовал бы отметить галочкой «Запускать вместе с Windows» .

    Запускать вместе с Windows

    3) После, перейти во вкладку «Кулер» и переставить контрольные точки на графике согласно вашим требованиям. См. на скрин ниже : первая контрольная точка показывает нам, что при температуре в 40°C — кулер будет работать всего на 30% своей мощности.

    Передвигаем контрольные точки под нужный режим

    Собственно, вам нужно-то всего передвинуть 3-4 точки, и дело «решено»!

    Способ 3: утилиты от производителя (обычно, для игровых устройств)

    Мощные игровые ноутбуки (ПК) чаще всего идут со спец. ПО от производителя (и обычно, в его опциях есть возможность детальной настройки работы кулеров). В этом случае нет смысла возиться со SpeedFan (тем более, что она может и не получить доступ к кулеру) .

    В качестве примера приведу наиболее популярную линейку игровых ноутбуков от MSI. С помощью утилиты Dragon Center можно настраивать очень многие «тонкие» параметры: в том числе и работу кулеров (см. вкладку «Fan Speed» ) .

    FAN SPEED — скорость вращения кулеров (Dragon Center)

    Чаще всего параметр «Fan Speed» для ручной настройки нужно перевести в режим «Advanced» (расширенный).

    Fan Speed — переводим в режим Advanced (т.е. расширенные настройки)

    А после отрегулировать кулер так, как это нужно вам. Например, если наступило лето (за окном стало жарко) и вы загрузили новый игровой хит — стоит прибавить мощности ☝.

    Ручная регулировка кулера видеокарты (GPU) и ЦП (CPU)

    Разумеется, у разных производителей могут быть свои решения. Dragon Center — это только пример.

    Способ 4: настройка вращения кулера в BIOS

    Не всегда утилиты SpeedFan, MSI Afterburner (и другие) корректно работают (особенно на ноутбуках).

    Дело в том, что в BIOS есть специальные функции, отвечающие за автоматическую регулировку скорости вращения кулеров. Называться в каждой версии BIOS они могут по-разному, например, Q-Fan, Fan Monitor, Fan Optomize, CPU Fan Contol и пр.

    И сразу отмечу, что далеко не всегда они работают хорошо, по крайне мере SpeedFan позволяет очень точно и тонко отрегулировать работу кулеров, так чтобы они и задачу выполняли, и пользователю не мешали.

    Чтобы отключить эти режимы (на фото ниже представлен Q-Fan и CPU Smart Fan Control) , необходимо войти в BIOS и перевести эти функции в режим Disable.

    Кстати, после этого кулеры заработают на максимальную мощность, возможно станут сильно шуметь (так будет, пока не отрегулируете их работу в SpeedFan (или др. утилите)) .

    В помощь! Г орячие клавиши для входа в меню BIOS, Boot Menu, восстановления из скрытого раздела.

    Настройка вращения кулеров в BIOS

    Настройки UEFI (AsRock)

    Во многих средне-ценовых ноутбуках возможность регулировки кулера заблокирована — т.е. ее в принципе нельзя отрегулировать (видимо, производители так защищают пользователя от неумелых действий) .

    Правда, в некоторых (например, у линейки HP Pavilion) кулер можно отключить (опция «Fan Always On» — кулер отключается, когда вы не нагружаете устройство ).

    Fan Always On — кулер всегда включен

    На этом сегодня всё, всем удачи и оптимальной работы вентиляторов.

    Виды и особенности устройства

    Существует множество видов вентиляторов, они задействованы в работе систем климат-контроля, компьютеров, ноутбуков, холодильников, многой другой офисной и бытовой техники.

    Чтобы контролировать скорость вращения его лопастей, часто применяется небольшой элемент – регулятор. Именно он позволяет продлить срок использования оборудования, а также, значительно снизить уровень шума в помещении.

    Назначение прибора для управления скоростью

    Когда кондиционер или вентилятор постоянно работает в режиме максимальной мощности, предусмотренной производителем, это неблагоприятно сказывается на сроке эксплуатации. Отдельные детали просто не могут выдержать такой ритм и быстро ломаются.

    Поэтому часто можно встретить рекомендации делать запас по мощности при выборе различного рода оборудования, чтобы оно не работало на пределе.

    Также часто в холодильных установках, компьютерах и другой технике определенные элементы перегреваются в процессе работы. Чтобы они не расплавились, производитель предусмотрел их охлаждение за счет работающих вентиляторов.

    Но не все выполняемые задачи требуют максимальной скорости движения вентилятора/кулера. При офисной работе компьютера или поддержании постоянной температуры в холодильной установке нагрузка значительно меньше, чем при выполнении сложных математических вычислений или заморозке соответственно. А вентилятор, не имеющий регулятора, будет вращаться с одинаковой скоростью.

    Скопление большого количества мощной техники, функционирующей в одном помещении, способно создавать шум на уровне 50 децибел и более за счет одновременно работающих вентиляторов на максимальных оборотах.

    В такой атмосфере человеку сложно работать, он быстро утомляется. Поэтому целесообразно использовать приборы, способные снизить уровень шума вентилятора не только в производственных цехах, но и в офисных помещениях.

    Помимо перегрева отдельных деталей и снижения уровня шума регуляторы позволяют рационально использовать технику, уменьшая и увеличивая при необходимости скорость вращения лопастей оборудования. Например, в системах климат-контроля, используемого во многих общественных местах и производственных помещениях.

    Одной из важных деталей умных приборов потолочного вентилирования помещения являются регуляторы оборотов. Их работу обеспечивают показатели датчиков температуры, влажности, давления. Вентиляторы, используемые для перемешивания воздуха в помещении спортзала, производственного цеха или офисного кабинета, помогают экономить средства, затрачиваемые на отопление.

    Это происходит за счет равномерного распределения нагретого воздуха, циркулирующего в помещении. Вентиляторы нагнетают верхние теплые слои вниз, перемешивая их с более холодными нижними. Ведь для комфорта человека важно, чтобы в нижней части комнаты, а не под потолком, было тепло. Регуляторы в таких системах следят за скоростью вращения, замедляя и ускоряя скорость движения лопастей.

    Основные разновидности регуляторов

    Контроллеры оборотов вентилятора востребованы. Рынок изобилует различными предложениями и рядовому пользователю, не знакомому с особенностями устройств, легко потеряться среди различных предложений.

    Регуляторы отличаются по принципу действия.

    Выделяют такие типы устройств:

    • тиристорные;
    • симисторные;
    • частотные;
    • трансформаторные.

    Первый тип приборов применяется для корректировки оборотов однофазных приборов, имеющих защиту от перегрева. Изменение скорости происходит за счет влияния регулятора на мощность подаваемого напряжения.

    Второй тип является разновидностью тиристорных устройств. Регулятор может одновременно управлять приборами постоянного и переменного тока. Характеризуется возможностью плавного понижения/повышения скорости оборотов при напряжении вентилятора до 220 В.

    Третий тип устройств изменяет частоту подаваемого напряжения. Основная задача – получить питающее напряжение в пределах 0-480 В. Контроллеры применяются для трехфазного оборудования в системах вентилирования помещений и в мощных кондиционерах.

    Трансформаторные контроллеры могут работать с одно- и трехфазным током. Они изменяют выходное напряжение, регулируя работу вентилятора и защищая прибор от перегрева. Могут использоваться в автоматическом режиме для регулировки оборотов нескольких мощных вентиляторов, учитывая показатели датчиков давления, температуры, влажности и прочие.

    Чаще всего в быту применяются симисторные регуляторы. Их относят к типу XGE. Можно обнаружить много предложений от разных производителей – они компактные и надежные. Причем диапазон цен также будет весьма широк.

    Трансформаторные же устройства довольно дорогие – в зависимости от дополнительных возможностей они могут стоить 700 долларов и более. Они относятся к регуляторам типа RGE и способны регулировать обороты очень мощных вентиляторов, используемых в промышленности.

    Особенности использования приборов

    Регуляторы оборотов вентилятора используются в промышленном оборудовании, в офисных помещениях, спортзалах, кафе, других местах общественного пользования. Также часто можно встретить такие контролеры в системах климат-контроля для домашнего использования.

    Системы вентилирования, используемые в фитнес-центрах, а также, кондиционеры, включаемые для обогрева в офисных помещениях, чаще всего содержат регулятор скорости вращения. Причем это не простой дешевый вариант, а дорогостоящее трансформаторное устройство, способное регулировать скорость вращения мощных приборов.

    Характеристики регуляторов скорости вращения вентиляторов

    Тип реобаса

    Основная задача разветвителя питания – обеспечить питанием дополнительные вентиляторы, для которых не нашлось разъемов на материнской плате. Разветвитель может и вообще не иметь функции управления скоростью вращения вентиляторов. Если такая функция и есть, то реализована она будет программно.

    Регулятор оборотов (реобас) – обладает большей, по сравнению с разветвителем, функциональностью. Кроме подключения дополнительных вентиляторов, реобас предоставляет и некоторые дополнительные возможности, среди которых могут быть:

    — контроль и отображение скорости вращения каждого подключенного вентилятора;

    — контроль температуры от собственного термодатчика (или нескольких термодатчиков);

    — автоматическая или ручная регулировка скоростей вращения вентиляторов;

    — контроль и отображение мощности, потребляемой подключенными вентиляторами

    Тип управления скоростью вращения может быть ручным или автоматическим.

    При ручном управлении скорость вращения задается оператором вручную – с помощью кнопок, ручки регулятора или на сенсорном экране. Несмотря на простоту такого способа управления, удобным он будет только в тех случаях, когда не требуется менять скорость вращения вентиляторов во время работы компьютера. Для подстройки скорости вращения корпусных вентиляторов такой способ еще сгодится, а для управления скоростью вращения кулера процессора – уже нет.

    Автоматический тип управления, предусматривающий автоматическое изменение скорости вращения кулера в зависимости от показаний термодатчика, намного удобнее в эксплуатации и обеспечивает лучшие условия работы оборудования. Для управления кулерами элементов, сильно меняющих температуру в зависимости от нагрузки, следует использовать реобасы с автоматическим типом управления.

    Количество подключаемых вентиляторов определяет, какое максимальное количество вентиляторов можно подключить к реобасу. Следует иметь в виду, что с ростом количества подключенных вентиляторов, растет и потребляемая устройством мощность; у блока питания компьютера должен быть достаточный запас мощности.

    Наличие дисплея с возможностью вывода на него значений температур и скоростей вращения вентиляторов в некоторых случаях может оказаться нелишним. Дисплей может предупредить о приближающемся перегреве или неисправности вентилятора и предотвратить сбой или потерю данных. Для серверов (часто не имеющих своего монитора) такой дисплей будет особенно полезен.

    Контроль температуры осуществляется по термодатчикам материнской платы либо по собственным термодатчикам реобаса. В последнем случае следует также выяснить количество каналов измерения температуры (проще говоря, количество термодатчиков). У многих реобасов контроль температуры производится по одному термодатчику. Если к такому реобасу предполагается подключение и кулеров процессора/видеокарты, это может привести к проблемам (если установить датчик у процессора, он может «не заметить» перегрева видеокарты и наоборот). Реобасы с несколькими термодатчиками стоят дороже, но в случаях, аналогичных вышеприведенному, на этом экономить не стоит.

    Разъемы для подключения вентиляторов могут быть 2-pin 3-pin и 4-pin.

    2-pin и 3-pin разъемы предполагают управление скоростью вращения вентилятора с помощью изменения его напряжения питания. Этот наиболее простой способ, поэтому реализующие его реобасы и вентиляторы недороги. Недостатками этого способа является невысокая точность задания частоты вращения и снижение крутящего момента со снижением напряжения. Вентиляторы с 3-pin разъемом вообще не могут крутиться медленнее некоторого порогового значения – крутящий момент становится настолько мал, что его не хватает для проворота крыльчатки. Для корпусных вентиляторов и вентиляторов жестких дисков такие вентиляторы подойдут, но на процессоры уже давно принято ставить вентиляторы, подключаемые 4-pin разъемом.

    4-pin разъемы предполагают управление скоростью вращения вентилятора с помощью широтно-импульсной модуляции (ШИМ). При этом питание на вентилятор подается полное — 12 вольт – но не постоянно, а импульсами, меняя продолжительность которых, можно очень точно задавать частоту вращения вентилятора. Кроме того, при таком способе нет ограничения на минимальную скорость вращения – регулируемый таким способом вентилятор может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа – он сложнее в реализации, а следовательно, дороже.

    Разъем питания реобаса может быть 3-pin (в этом случае регулятор скорости подключается к одному из свободных 3-pin разъемов материнской платы) 4-pin Molex (питание берется с одного из разъемов блока питания) и SATA (питание берется с разъема SATA материнской платы).

    • окт. 16
    • настройка, вентилятор
    • 8507
    • 0

    Большинство компьютеров имеет механизм управления скоростью вращения, установленными в системе вентиляторами охлаждения. Данный механизм жестко прошит в BIOS материнской платы, и пользователь может либо включить вращение вентиляторов на максимальное охлаждение, либо использовать адаптивную схему изменения скорости. То есть по мере нагрева процессора скорость вращения вентилятора будет увеличиваться, тем самым не давая перегреваться чипу. Такой механизм позволяет также несколько снизить шум системы.

    Однако алгоритм изменения скорости вращения вентиляторов не всегда работает корректно или допускает кратковременный перегрев, что для пользователя может быть недопустимо. В таком случае каждый может настроить самостоятельно алгоритм изменения скорости вращения кулера в зависимости от своих потребностей. Если вы хотите понизить шум системы, таким образом, то достаточно установить низкие обороты при температуре процессора, скажем, до 50 градусов Цельсия, а при повышении выше 60-70 градусов – установить плавный выход на максимальное охлаждение. Для всех этих целей можно использовать бесплатную утилиту – SpeedFan.

    Для настройки программы необходимо нажать кнопку «Configure» в главном окне программы на вкладке «Readings».

    Автоматический контроль скорости устанавливается на вкладке «Fan Control» (Управление вентилятором). Нажмите здесь кнопку «Advanced Fan Control» (Расширенное управление вентилятором) и кнопкой «Add» (Добавить) создайте новую схему управления.

    После этого устанавливаем галочку напротив пункта «Controlled Speed» (Управление скоростью) и выбираем из списка нужный вентилятор, управление которым необходимо настроить. Ниже будет представлены все датчики, которые следят за температурой чипа (Temperature)/ Выберете любой датчик из списка и нажмите на кнопку «Add». После этого отобразится график управления скоростью вентилятора в зависимости от температуры данного датчика.

    Данный график пользователь может легко откорректировать простым передвижением графика мышкой. Если использовать несколько датчиков для управления скоростью вращения одного и того же вентилятора, то воспользуйтесь опцией «Method», которая определяет взаимодействие настроенных схем между собой. Например, метод суммирования (SUM of speed) производит суммирование графиков скоростей вращения и при настройке двух кривых на 30% в итоге вентилятор будет вращаться со скоростью 60% от максимальной.

    Если вы перейдете на вкладку «Temperatures», то сможете настроить дополнительные настройки управления вентиляторами. В частности можно установить температуру, при которой вентилятор вне зависимости от настроек управления вращением вентиляторов автоматически переключится на максимальную скорость вращения. Данная температура устанавливается значением «Warning».

    На вкладке «Speed» (Скорость) можно установить максимальную и минимальную скорость вращения кулера. Такая установка имеет более высокий приоритет над настройками на вкладке «Fan Control». Поэтому даже если вы настроили переход на 100% мощность вентилятора при достижении некоторой температуры, а на вкладке «Speed» ограничили скорость до 90%, то вентилятор не будет крутиться с максимальной скоростью.

    Чтобы задействовать автоматическую регулировку скорости вращения вентилятора необходимо установить галочку на пункте «Automatic fan speed».

    ps Программа абсолютно бесплатна и бонусом к мониторингу и регулировке вентиляторов пользователь программы получает мониторинг состояния жестких дисков — S.M.A.R.T.

    Поделитесь своим опытом в комментариях, доверяете ли Вы регулировку скорости вращения вентиляторов BIOS’у компьютера или пользуетесь какой-то специальной программой?

    0 0 голоса
    Рейтинг статьи
    Читать еще:  Прогрузка автоматических выключателей ПУЭ
    Ссылка на основную публикацию
    ВсеИнструменты